首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   21篇
  2024年   2篇
  2023年   6篇
  2022年   6篇
  2021年   13篇
  2020年   8篇
  2019年   15篇
  2018年   20篇
  2017年   9篇
  2016年   16篇
  2015年   13篇
  2014年   22篇
  2013年   24篇
  2012年   37篇
  2011年   20篇
  2010年   9篇
  2009年   11篇
  2008年   21篇
  2007年   10篇
  2006年   21篇
  2005年   14篇
  2004年   6篇
  2003年   12篇
  2002年   8篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
排序方式: 共有329条查询结果,搜索用时 31 毫秒
71.
The assembly of collagen fibers, the major component of the extracellular matrix (ECM), governs a variety of physiological processes. Collagen fibrillogenesis is a tightly controlled process in which several factors, including collagen binding proteins, have a crucial role. Discoidin domain receptors (DDR1 and DDR2) are receptor tyrosine kinases that bind to and are phosphorylated upon collagen binding. The phosphorylation of DDRs is known to activate matrix metalloproteases, which in turn cleave the ECM. In our earlier studies, we established a novel mechanism of collagen regulation by DDRs; that is, the extracellular domain (ECD) of DDR2, when used as a purified, soluble protein, inhibits collagen fibrillogenesis in-vitro. To extend this novel observation, the current study investigates how the DDR2-ECD, when expressed as a membrane-anchored, cell-surface protein, affects collagen fibrillogenesis by cells. We generated a mouse osteoblast cell line that stably expresses a kinase-deficient form of DDR2, termed DDR2/-KD, on its cell surface. Transmission electron microscopy, fluorescence microscopy, and hydroxyproline assays demonstrated that the expression of DDR2/-KD reduced the rate and abundance of collagen deposition and induced significant morphological changes in the resulting fibers. Taken together, our observations extend the functional roles that DDR2 and possibly other membrane-anchored, collagen-binding proteins can play in the regulation of cell adhesion, migration, proliferation and in the remodeling of the extracellular matrix.  相似文献   
72.

BACKGROUND:

The present sero-genetic study is the first of its kind to present the baseline data of Bharia tribe of Madhya Pradesh. The main aim of this study is to provide phenotype and allele-frequency data to characterize the population genetically and to fill the void on the genetic map of Madhya Pradesh.

MATERIALS AND METHODS:

For this, blood samples from 92 unrelated healthy individuals of Bharia tribe from Chhindwara district (Tamia block) were collected. Hemolysates prepared were analyzed for two serological (A1A2BO and Rh) and six biochemical (adenosine deaminase, adenylate kinase locus 1, acid phosphatase locus 1, phosphoglucomutase locus 1, esterase D and glucosephosphate isomerase) parameters, following the standard electrophoretic techniques.

RESULTS:

The Chi-square test for goodness of fit revealed no significant deviation between the observed and expected numbers in any of the seven genetic markers, suggesting that the tribe is in genetic equilibrium. A high incidence of B allele in A1A2BO blood group and low incidence of the A1 allele, with presence of A2 in only one individual, and a low frequency of Rh(D) (Rh negative allele) was observed in serological markers. Also, no rare variant was observed for biochemical markers.

CONCLUSION:

Principal Component Analysis done in order to detect the genetic affinity of Bharia tribe with other populations from the adjoining states of Madhya Pradesh based on the allele frequencies, showed a close association of Bharia with Gujarat and Rajasthan. Hence, this study has been helpful in revealing the genetic structure and affinity of Bharia tribe.  相似文献   
73.
Summary: Lindane, the γ-isomer of hexachlorocyclohexane (HCH), is a potent insecticide. Purified lindane or unpurified mixtures of this and α-, β-, and δ-isomers of HCH were widely used as commercial insecticides in the last half of the 20th century. Large dumps of unused HCH isomers now constitute a major hazard because of their long residence times in soil and high nontarget toxicities. The major pathway for the aerobic degradation of HCH isomers in soil is the Lin pathway, and variants of this pathway will degrade all four of the HCH isomers although only slowly. Sequence differences in the primary LinA and LinB enzymes in the pathway play a key role in determining their ability to degrade the different isomers. LinA is a dehydrochlorinase, but little is known of its biochemistry. LinB is a hydrolytic dechlorinase that has been heterologously expressed and crystallized, and there is some understanding of the sequence-structure-function relationships underlying its substrate specificity and kinetics, although there are also some significant anomalies. The kinetics of some LinB variants are reported to be slow even for their preferred isomers. It is important to develop a better understanding of the biochemistries of the LinA and LinB variants and to use that knowledge to build better variants, because field trials of some bioremediation strategies based on the Lin pathway have yielded promising results but would not yet achieve economic levels of remediation.  相似文献   
74.
The centromere is a genetic locus, required for faithful chromosome segregation, where spindle fibers attach to the chromosome through kinetochore. Loss of centromere or formation of multiple centromeres on a single chromosome leads to chromosome missegregation or chromosome breakage, respectively, which are detrimental for fitness and survival of a cell. Therefore, understanding the mechanism of centromere locus determination on the chromosome and perpetuation of such a locus in subsequent generation (known as centromere identity) is very fundamental to combat conditions like aneuploidy, spontaneous abortion, developmental defects, cell lethality and cancer. Recent studies have come up with different models to explain centromere identity. However, the exact mechanism still remains elusive. It has been observed that most eukaryotic centromeres are determined epigenetically rather than by a DNA sequence. The epigenetic marks that are instrumental in determining centromere identity are the histone H3 variant, CENP-A and the specialized posttranslational modification of the core histones. Here we will review the recent studies on the factors responsible for generating unique centromeric chromatin and how it perpetuates during cell division giving the present-day models. We will further focus on the probable mechanism of de novo centromere formation with an example of neocentromere. As a matter of similitude, this review will include marking extrachromosomal chromatin to be served as a partitioning locus by deposition of CENP-A homolog in budding yeast.  相似文献   
75.
76.
77.
78.
To determine which genes may be regulated by Akt and participate in the transformation of cells, we have examined by microarray analyses genes turned on in the prostate cancer cell line, PC3, when Akt activity was induced. PC3 cells, which lack the lipid phosphatase PTEN, were treated overnight with a reversible inhibitor of the phosphatidylinositol 3-kinase, LY294002 (a treatment which was found to reversibly decrease Akt enzymatic activity). The inhibitor was then washed out and mRNA collected 2, 6, and 10 h later and compared by microarray analyses with mRNAs present immediately after removal of the inhibitor. One of the identified induced mRNAs, Fra-1, was further studied by transient transfections of a reporter construct containing its 5' regulatory region. This construct was found to be directly induced 4- to 5-fold by co-transfection with constitutively active Akt3 but not kinase dead Akt. The regulation by Akt3 was found to be due to two specific regions in the Fra-1 regulatory sequence which match Sp1 consensus sites. Finally, gel shift studies showed that the binding of Sp1 to one of these sites was dependent on the PI 3-kinase pathway. These results indicate that LY294002 treatment and washout is a useful method to study the activation of Akt in the context of a tumor cell. Moreover, the identification of Fra-1 as an Akt-regulated gene may have implications for the ability of Akt to transform cells since Fra-1 has been implicated in cell growth and the aggressiveness of tumors.  相似文献   
79.
Adiponectin is an antidiabetic endogenous adipokine that plays a protective role against the unfavorable metabolic sequelae of obesity. Recent evidence suggests a sinister link between hypoadiponectinemia and development of insulin resistance/type 2 diabetes (T2D). Adiponectin's insulin-sensitizing property is mediated through the specific adiponectin receptors R1 and R2, which activate the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR) α pathways. AdipoAI is a novel synthetic analogue of endogenous adiponectin with possibly similar pharmacological effects. Thus, there is a need of orally active small molecules that activate Adipoq subunits, and their downstream signaling, which could ameliorate obesity related type 2 diabetes. In the study we aim to investigate the effects of AdipoAI on obesity and T2D. Through in-vitro and in-vivo analyses, we investigated the antidiabetic potentials of AdipoAI and compared it with AdipoRON, another orally active adiponectin receptors agonist. Our results showed that in-vitro treatment of AdipoAI (0–5 µM) increased adiponectin receptor subunits AdipoR1/R2 with increase in AMPK and APPL1 protein expression in C2C12 myotubes. Similarly, in-vivo, oral administration of AdipoAI (25 mg/kg) observed similar effects as that of AdipoRON (50 mg/kg) with improved control of blood glucose and insulin sensitivity in diet-induced obesity (DIO) mice models. Further, AdipoAI significantly reduced epididymal fat content with decrease in inflammatory markers and increase in PPAR-α and AMPK levels and exhibited hepatoprotective effects in liver. Further, AdipoAI and AdipoRON also observed similar results in adipose tissue. Thus, our results suggest that low doses of orally active small molecule agonist of adiponectin AdipoAI can be a promising therapeutic target for obesity and T2D.  相似文献   
80.
During blood coagulation, factor IXa (FIXa) activates factor X (FX) requiring Ca2+, phospholipid, and factor VIIIa (FVIIIa). The serine protease domain of FIXa contains a Ca2+ site and is predicted to contain a Na+ site. Comparative homology analysis revealed that Na+ in FIXa coordinates to the carbonyl groups of residues 184A, 185, 221A, and 224 (chymotrypsin numbering). Kinetic data obtained at several concentrations of Na+ and Ca2+ with increasing concentrations of a synthetic substrate (CH3-SO2-d-Leu-Gly-Arg-p-nitroanilide) were fit globally, assuming rapid equilibrium conditions. Occupancy by Na+ increased the affinity of FIXa for the synthetic substrate, whereas occupancy by Ca2+ decreased this affinity but increased k(cat) dramatically. Thus, Na+-FIXa-Ca2+ is catalytically more active than free FIXa. FIXa(Y225P), a Na+ site mutant, was severely impaired in Na+ potentiation of its catalytic activity and in binding to p-aminobenzamidine (S1 site probe) validating that substrate binding in FIXa is linked positively to Na+ binding. Moreover, the rate of carbamylation of NH2 of Val16, which forms a salt-bridge with Asp194 in serine proteases, was faster for FIXa(Y225P) and addition of Ca2+ overcame this impairment only partially. Further studies were aimed at delineating the role of the FIXa Na+ site in macromolecular catalysis. In the presence of Ca2+ and phospholipid, with or without saturating FVIIIa, FIXa(Y225P) activated FX with similar K(m) but threefold reduced k(cat). Further, interaction of FVIIIa:FIXa(Y225P) was impaired fourfold. Our previous data revealed that Ca2+ binding to the protease domain increases the affinity of FIXa for FVIIIa approximately 15-fold. The present data indicate that occupancy of the Na+ site further increases the affinity of FIXa for FVIIIa fourfold and k(cat) threefold. Thus, in the presence of Ca2+, phospholipid, and FVIIIa, binding of Na+ to FIXa increases its biologic activity by approximately 12-fold, implicating its role in physiologic coagulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号