首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   22篇
  330篇
  2024年   2篇
  2023年   6篇
  2022年   7篇
  2021年   13篇
  2020年   8篇
  2019年   15篇
  2018年   20篇
  2017年   9篇
  2016年   16篇
  2015年   13篇
  2014年   22篇
  2013年   24篇
  2012年   37篇
  2011年   20篇
  2010年   9篇
  2009年   11篇
  2008年   21篇
  2007年   10篇
  2006年   21篇
  2005年   14篇
  2004年   6篇
  2003年   12篇
  2002年   8篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
排序方式: 共有330条查询结果,搜索用时 15 毫秒
321.
The discoidin domain receptors (DDRs) are receptor tyrosine kinases that recognize collagens as their ligands. DDRs display unique structural features and distinctive activation kinetics, which set them apart from other members of the kinase superfamily. DDRs regulate cell-collagen interactions in normal and pathological conditions and thus are emerging as major sensors of collagen matrices and potential novel therapeutic targets. New structural and biological information has shed light on the molecular mechanisms that regulate DDR signaling, turnover, and function. This minireview provides an overview of these areas of DDR research with the goal of fostering further investigation of these intriguing and unique receptors.  相似文献   
322.
Ethanol exerts numerous pharmacological effects through its interaction with various neurotransmitters. The dopaminergic pathway is associated with cognitive, endocrine, and motor functions, and reinforcement of addictive substances or behaviours. Aldehyde dehydrogenase (ALDH) is a vital enzyme involved with alcohol metabolism and detoxification. In the present study, we investigated the role of cerebral cortex and brain stem dopamine D2 receptors in the functional regulation on ALDH enzyme activity, in ethanol administrated rats. Two groups of rats were selected viz. control and alcoholic. Cerebral cortex, brain stem and the liver dopamine content was decreased significantly (P < 0.05, 0.05, 0.001, respectively) and homovanillic acid/dopamine (HVA/DA) ratio has significantly increased (P < 0.05, 0.001 and 0.001), respectively in ethanol treated rats when compared to control. Scatchard analysis of [3H]YM-09151-2 binding to synaptic membrane preparations of cerebral cortex and brain stem showed a significant decrease (P < 0.001, 0.05, respectively) in B max in ethanol treated rats compared to control and the K d also decreased significantly (P < 0.05). The ALDH analysis showed a significant increase (P < 0.05) in V max in cerebral cortex, plasma and liver of experimental rats when compared with control without having significant change in brain stem but with decreased K m (P < 0.001). Our results suggest that decreased function of dopamine mediated through DA D2 receptor in the cerebral cortex and brain stem enhanced the brain, plasma and liver ALDH activity in ethanol treated rats. This ALDH regulation has significance to correct alcoholics from addiction due to allergic reaction observed in aldehyde accumulation.  相似文献   
323.
Transgenic Research - Genome-editing technologies offer unprecedented opportunities for crop improvement with superior precision and speed. This review presents an analysis of the current state of...  相似文献   
324.
Anharmonicity in time-dependent conformational fluctuations is noted to be a key feature of functional dynamics of biomolecules. Although anharmonic events are rare, long-timescale (μs–ms and beyond) simulations facilitate probing of such events. We have previously developed quasi-anharmonic analysis to resolve higher-order spatial correlations and characterize anharmonicity in biomolecular simulations. In this article, we have extended this toolbox to resolve higher-order temporal correlations and built a scalable Python package called anharmonic conformational analysis (ANCA). ANCA has modules to: 1) measure anharmonicity in the form of higher-order statistics and its variation as a function of time, 2) output a storyboard representation of the simulations to identify key anharmonic conformational events, and 3) identify putative anharmonic conformational substates and visualization of transitions between these substates.  相似文献   
325.
Protein aggregation is a multi-step process that requires sequential structural transitions of monomers during their incorporation into oligomers. Such process involves the formation of various intermediate stages in protein structures. Seed-nucleation mediated oligomerization is observed in many aggregation-prone proteins. Understanding of the protein seed's structural features and mechanisms of its transition-state formation are important for knowing the details of post-nucleation aggregation process. We have identified the metastable states in the seeds of the Ubiquitin associated (UBA) domain of Huntingtin Interacting Protein K (HYPK). This is studied by monitoring the events of dynamic transitions of metastable seeds to aggregates or monomers through microscopy, biophysical and computational techniques. HYPK-UBA seeds can exist in specific metastable state(s) that show transition from closed to open conformations, thereby reorienting the helix associated hydrophobic patches to cause its self-aggregation. Metastable seeds show inter-seed exchange of monomers through simultaneous dissociation-association phenomenon. Monomer release from metastable seeds can cause the dissolution of the aggregates. Like metastable monomers, metastable seeds also show reduction in their secondary structure by altering the molecular contacts and solvent accessible hydrophobic surfaces. Induction of metastable seeds from the ground-state is a slow thermodynamic process and it results from excitable perturbations. Conclusively, we propose the concept that the thermodynamic induction of metastable states in HYPK-UBA seed potentiates the molecule to switch its conformations that increases the protein's self-aggregation by the mechanism of hydrophobic patch collapse, while also releasing the monomers from oligomeric seeds due to structural instability.  相似文献   
326.
HIV-1 is restricted in macrophages and certain quiescent myeloid cells due to a “Scorched Earth” dNTP starvation strategy attributed to the sterile alpha motif and HD domain protein—SAMHD1. Active SAMHD1 tetramers are assembled by GTP-Mg+2-dNTP cross bridges and cleave the triphosphate groups of dNTPs at a K m of ~10 μM, which is consistent with dNTP concentrations in cycling cells, but far higher than the equivalent concentration in quiescent cells. Given the substantial disparity between the dNTP concentrations required to activate SAMHD1 tetramers (~10 μM) and the dNTP concentrations in noncycling cells (~10 nM), the possibility of alternate enzymatically active forms of SAMHD1, including monomers remains open. In particular, the possibility of redox regulation of such monomers is also an open question. There have been experimental studies on the regulation of SAMHD1 by Glutathione driven redox reactions recently. Therefore, in this work, we have performed all-atom molecular dynamics simulations to study the dynamics of monomeric SAMHD1 constructs in the context of the three redox-susceptible Cysteine residues and compared them to monomers assembled within a tetramer. Our results indicate that assembly into a tetramer causes ordering of the catalytic core and increased solvent accessibility of the Catalytic Site. We have also found that glutathionylation of surface exposed C522 causes long range allosteric disruptions extending into the protein core. Finally, we see evidence suggesting a transient interaction between C522 and C341. Such a disulfide linkage has been hypothesized by experimental models, but has never been observed in crystal structures before.  相似文献   
327.
The role of TatD DNases as DNA repair enzymes or cell death (apoptotic) nucleases is well established in prokaryotes as well as eukaryotes. The current study aims to characterize the TatD nuclease from Bacillus anthracis (Ba TatD) and to explore its key histidine catalytic residues. Ba TatD was found to be a metal-dependent, nonspecific endonuclease which could efficiently cleave double-stranded DNA substrates. Moreover, Ba TatD nuclease was observed to be thermostable up to 55°C and act in a wide pH range indicating its industrial applicability. Diethyl pyrocarbonate-based histidine-selective alkylation of the Ba TatD resulted in a loss of its nuclease activity suggesting a crucial role of the histidine residues in its activity. The key residues of Ba TatD were predicted using sequence analysis and structure-based approaches, and then the predicted residues were further tested by mutational analysis. Upon mutational analysis, H128 and H153 have been found to be crucial for Ba TatD activity, though H153 seems to bear an important but a dispensable role for the Ba TatD nuclease. Ba TatD had a uniform expression in the cytosol of B. anthracis, which indicates a significant role of the protein in the pathogen's life cycle. This is the first study to identify and characterize the TatD DNase from B. anthracis and will be helpful in gaining more insights on the role of TatD proteins in Gram-positive bacteria where it remains unexplored.  相似文献   
328.
In the past few decades, increased awareness of environmental pollution has led to the exploitation of microbial metabolic potential in the construction of several genetically engineered microorganisms (GEMs) for bioremediation purposes. At the same time, environmental concerns and regulatory constraints have limited the in situ application of GEMs, the ultimate objective behind their development. In order to address the anticipated risks due to the uncontrolled survival/dispersal of GEMs or recombinant plasmids into the environment, some attempts have been made to construct systems that would contain the released organisms. This article discusses the designing of safer genetically engineered organisms for environmental release with specific emphasis on the use of bacterial plasmid addiction systems to limit their survival thus minimizing the anticipated risk. We also conceptualize a novel strategy to construct "Suicidal Genetically Engineered Microorganisms (SGEMs)" by exploring/combining the knowledge of different plasmid addiction systems (such as antisense RNA-regulated plasmid addiction, proteic plasmid addiction etc.) and inducible degradative operons of bacteria.  相似文献   
329.
With increasing awareness towards environment-friendly and non-toxic pesticide azadirachtin obtained from neem tree (Azadirachta indica) is gaining more and more importance. Its broad-spectrum activity, peculiar mode of action. eco-friendly and non-toxic action towards beneficial organisms has offered many advantages over chemical pesticides. All currently use commercial formulations based on azadirachtin contains azadirachtin extracted from seeds of naturally grown whole plants which is labour intensive process depending upon many uncontrollable geographical and climatic factors. Plant tissue culture can be a potential process for the production, offering consistent, stable and controlled supply of this bioactive compound, However the research on tissue culture aspects of production are in preliminary stage and requires culture and process optimization for the development of a commercially viable process. This review states the present status and future challenges of plant tissue culture for azadirachtin production.  相似文献   
330.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号