首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   22篇
  330篇
  2024年   2篇
  2023年   6篇
  2022年   7篇
  2021年   13篇
  2020年   8篇
  2019年   15篇
  2018年   20篇
  2017年   9篇
  2016年   16篇
  2015年   13篇
  2014年   22篇
  2013年   24篇
  2012年   37篇
  2011年   20篇
  2010年   9篇
  2009年   11篇
  2008年   21篇
  2007年   10篇
  2006年   21篇
  2005年   14篇
  2004年   6篇
  2003年   12篇
  2002年   8篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
排序方式: 共有330条查询结果,搜索用时 0 毫秒
111.
112.
Depression is characterized by sadness, purposelessness, irritability, and impaired body functions. Depression causes severe symptoms for several weeks, and dysthymia, which may cause chronic, low-grade symptoms. Treatment of depression involves psychotherapy, medications, or phototherapy. Clinical and experimental evidence indicates that an appropriate diet can reduce symptoms of depression. The neurotransmitter, serotonin (5-HT), synthesized in the brain, plays an important role in mood alleviation, satiety, and sleep regulation. Although certain fruits and vegetables are rich in 5-HT, it is not easily accessible to the CNS due to blood brain barrier. However the serotonin precursor, tryptophan, can readily pass through the blood brain barrier. Tryptophan is converted to 5-HT by tryptophan hydroxylase and 5-HTP decarboxylase, respectively, in the presence of pyridoxal phosphate, derived from vitamin B6. Hence diets poor in tryptophan may induce depression as this essential amino acid is not naturally abundant even in protein-rich foods. Tryptophan-rich diet is important in patients susceptible to depression such as certain females during pre and postmenstrual phase, post-traumatic stress disorder, chronic pain, cancer, epilepsy, Parkinson’s disease, Alzheimer’s disease, schizophrenia, and drug addiction. Carbohydrate-rich diet triggers insulin response to enhance the bioavailability of tryptophan in the CNS which is responsible for increased craving of carbohydrate diets. Although serotonin reuptake inhibitors (SSRIs) are prescribed to obese patients with depressive symptoms, these agents are incapable of precisely regulating the CNS serotonin and may cause life-threatening adverse effects in the presence of monoamine oxidase inhibitors. However, CNS serotonin synthesis can be controlled by proper intake of tryptophan-rich diet. This report highlights the clinical significance of tryptophan-rich diet and vitamin B6 to boost serotonergic neurotransmission in depression observed in various neurodegenerative diseases. However pharmacological interventions to modulate serotonergic neurotransmission in depression, remains clinically significant. Depression may involve several other molecular mechanisms as discussed briefly in this report.  相似文献   
113.
The outburst of green biotechnology has facilitated a substantial upsurge in the usage of enzymes in a plethora of industrial bioconversion processes. The tremendous biocatalytic potential of industrial enzymes provides an upper edge over chemical technologies in terms of safety, reusability, and better process control. Tannase is one such enzyme loaded with huge potential for bioconversion of hydrolysable tannins to gallic acid. Tannins invariably occur in pteridophytes, gymnosperms, and angiosperms and predominately cumulate in plant parts like fruits, bark, roots, and leaves. Furthermore, toxic tannery effluents from various tanneries are loaded with significant levels of tannins in the form of tannic acid. Tannase can be principally employed for debasing the tannins that predominately occur in the toxic tannery effluents thus providing a relatively much cheaper measure for their biodegradation. Over the years, microbial tannase-catalyzed tannin degradation has gained momentum. The plentious availability of tannin-containing agro- and industrial waste paves a way for efficient utilization of microbial tannase for tannin degradation eventually resulting into gallic acid production. Gallic acid has received a great deal of attention as a molecule of enormous therapeutic and indusrial potential. The current worldwide demand of gallic acid is 8000 t per annum. As a matter of fact, bioconversion of tannins into gallic acid through fermentation has not been exploited completely. This necessitates further studies for development of more efficient, economical, productive processes and improved strains for gallic acid production so as to meet its current demand.  相似文献   
114.
Towards addressing the knowledge gap of how bupropion interacts with the dopamine transporter (DAT) and nicotinic acetylcholine receptors (nAChRs), a ligand was synthesized in which the chlorine of bupropion was isosterically replaced with an iodine and a photoreactive azide was added to the 4'-position of the aromatic ring. Analog (±)-3 (SADU-3-72) demonstrated modest DAT and α4β2 nAChR affinity. A radioiodinated version was shown to bind covalently to hDAT expressed in cultured cells and affinity-purified, lipid-reincorporated human α4β2 neuronal nAChRs. Co-incubation of (±)-[(125)I]-3 with non-radioactive (±)-bupropion or (-)-cocaine blocked labeling of these proteins. Compound (±)-[(125)I]-3 represents the first successful example of a DAT and nAChR photoaffinity ligand based on the bupropion scaffold. Such ligands are expected to assist in mapping bupropion-binding pockets within plasma membrane monoamine transporters and ligand-gated nAChR ion channels.  相似文献   
115.
116.
In mammals, seven members of the sirtuin protein family known as class III histone deacetylase have been identified for their characteristic features. These distinguished characteristics include the tissues where they are distributed or located, enzymatic activities, molecular functions, and involvement in diseases. Among the sirtuin members, SIRT3 has received much attention for its role in cancer genetics, aging, neurodegenerative disease, and stress resistance. SIRT3 controls energy demand during stress conditions such as fasting and exercise as well as metabolism through the deacetylation and acetylation of mitochondrial enzymes. SIRT3 is well known for its ability to eliminate reactive oxygen species and to prevent the development of cancerous cells or apoptosis. This review article provides a comprehensive review on numerous (noteworthy) molecular functions of SIRT3 and its effect on cancer cells and various diseases including Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease.  相似文献   
117.
During blood coagulation, factor IXa (FIXa) activates factor X (FX) requiring Ca2+, phospholipid, and factor VIIIa (FVIIIa). The serine protease domain of FIXa contains a Ca2+ site and is predicted to contain a Na+ site. Comparative homology analysis revealed that Na+ in FIXa coordinates to the carbonyl groups of residues 184A, 185, 221A, and 224 (chymotrypsin numbering). Kinetic data obtained at several concentrations of Na+ and Ca2+ with increasing concentrations of a synthetic substrate (CH3-SO2-d-Leu-Gly-Arg-p-nitroanilide) were fit globally, assuming rapid equilibrium conditions. Occupancy by Na+ increased the affinity of FIXa for the synthetic substrate, whereas occupancy by Ca2+ decreased this affinity but increased k(cat) dramatically. Thus, Na+-FIXa-Ca2+ is catalytically more active than free FIXa. FIXa(Y225P), a Na+ site mutant, was severely impaired in Na+ potentiation of its catalytic activity and in binding to p-aminobenzamidine (S1 site probe) validating that substrate binding in FIXa is linked positively to Na+ binding. Moreover, the rate of carbamylation of NH2 of Val16, which forms a salt-bridge with Asp194 in serine proteases, was faster for FIXa(Y225P) and addition of Ca2+ overcame this impairment only partially. Further studies were aimed at delineating the role of the FIXa Na+ site in macromolecular catalysis. In the presence of Ca2+ and phospholipid, with or without saturating FVIIIa, FIXa(Y225P) activated FX with similar K(m) but threefold reduced k(cat). Further, interaction of FVIIIa:FIXa(Y225P) was impaired fourfold. Our previous data revealed that Ca2+ binding to the protease domain increases the affinity of FIXa for FVIIIa approximately 15-fold. The present data indicate that occupancy of the Na+ site further increases the affinity of FIXa for FVIIIa fourfold and k(cat) threefold. Thus, in the presence of Ca2+, phospholipid, and FVIIIa, binding of Na+ to FIXa increases its biologic activity by approximately 12-fold, implicating its role in physiologic coagulation.  相似文献   
118.
HLA class I loss is a significant mechanism of immune evasion by cervical carcinoma, interfering with the development of immunotherapies and cancer vaccines. We report the systematic investigation of HLA class I and antigen processing machinery component expression and association with clinical outcome. A tissue microarray containing carcinoma lesions from 109 cervical carcinoma patients was stained for HLA class I heavy chains, β2-microglobulin, LMP2, LMP7, LMP10, TAP1, TAP2, ERAP1, tapasin, calreticulin, calnexin and ERp57. A novel staining evaluation method was used to ensure optimal accuracy and reliability of expression data, which were correlated with known clinicopathological parameters. Partial HLA class I loss was significantly associated with decreased 5-years overall survival (61% vs. 83% for normal expression; P < 0.05) and was associated with decreased 5-years disease-free survival (DFS) (65% vs. 82% for normal expression; P = 0.05). All APM components except LMP10, calnexin and calreticulin were down-regulated in a substantial number of cases and, except ERAP1, correlated significantly with HLA class I down-regulation. LMP7, TAP1 and ERAP1 loss was significantly associated with decreased overall and (except LMP7) DFS (P < 0.05 and 0.005, respectively). ERAP1 down-regulation was an independent predictor for worse overall and DFS in multivariate analysis (HR 3.08; P < 0.05 and HR 2.84; P < 0.05, respectively). HLA class I and APM component down-regulation occur frequently in cervical carcinoma, while peptide repertoire alterations due to ERAP1 loss are a major contributing factor to tumour progression and mortality.  相似文献   
119.
The study of anticancer agents that act via stabilization of telomeric G-quadruplex DNA (G4DNA) is important because such agents often inhibit telomerase activity. Several types of G4DNA binding ligands are known. In these studies, the target structures often involve a single G4 DNA unit formed by short DNA telomeric sequences. However, the 3'-terminal single-stranded human telomeric DNA can form higher-order structures by clustering consecutive quadruplex units (dimers or n-mers). Herein, we present new synthetic gemini (twin) bisbenzimidazole ligands, in which the oligo-oxyethylene spacers join the two bisbenzimidazole units for the recognition of both monomeric and dimeric G4DNA, derived from d(T2AG3)4 and d(T2AG3)8 human telomeric DNA, respectively. The spacer between the two bisbenzimidazoles in the geminis plays a critical role in the G4DNA stability. We report here (i) synthesis of new effective gemini anticancer agents that are selectively more toxic towards the cancer cells than the corresponding normal cells; (ii) formation and characterization of G4DNA dimers in solution as well as computational construction of the dimeric G4DNA structures. The gemini ligands direct the folding of the single-stranded DNA into an unusually stable parallel-stranded G4DNA when it was formed in presence of the ligands in KCl solution and the gemini ligands show spacer length dependent potent telomerase inhibition properties.  相似文献   
120.

Background  

Burkholderia sp. strain SJ98 is known for its chemotaxis towards nitroaromatic compounds (NACs) that are either utilized as sole sources of carbon and energy or co-metabolized in the presence of alternative carbon sources. Here we test for the chemotaxis of this strain towards six chloro-nitroaromatic compounds (CNACs), namely 2-chloro-4-nitrophenol (2C4NP), 2-chloro-3-nitrophenol (2C3NP), 4-chloro-2-nitrophenol (4C2NP), 2-chloro-4-nitrobenzoate (2C4NB), 4-chloro-2-nitrobenzoate (4C2NB) and 5-chloro-2-nitrobenzoate (5C2NB), and examine its relationship to the degradation of such compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号