首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   21篇
  2024年   2篇
  2023年   6篇
  2022年   6篇
  2021年   13篇
  2020年   8篇
  2019年   15篇
  2018年   20篇
  2017年   9篇
  2016年   16篇
  2015年   13篇
  2014年   22篇
  2013年   24篇
  2012年   37篇
  2011年   20篇
  2010年   9篇
  2009年   11篇
  2008年   21篇
  2007年   10篇
  2006年   21篇
  2005年   14篇
  2004年   6篇
  2003年   12篇
  2002年   8篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
排序方式: 共有329条查询结果,搜索用时 390 毫秒
11.
Eucalyptus grandis is the most widely planted tree species worldwide and can face severe drought during the initial months after planting because the root system is developing. A complete randomized design was used to study the effects of two water regimes (well‐watered and water‐stressed) and phosphorus (P) applications (with and without P) on the morphological and physio‐biochemical responses of E. grandis. Drought had negative effects on the growth and metabolism of E. grandis, as indicated by changes in morphological traits, decreased net photosynthetic rates (Pn), pigment concentrations, leaf relative water contents (LRWCs), nitrogenous compounds, over‐production of reactive oxygen species (ROS) and higher lipid peroxidation. However, E. grandis showed effective drought tolerance strategies, such as reduced leaf area and transpiration rate (E), higher accumulation of soluble sugars and proline and a strong antioxidative enzyme system. P fertilization had positive effects on well‐watered seedlings due to improved growth and photosynthesis, which indicated the high P requirements during the initial E. grandis growth stage. In drought‐stressed seedlings, P application had no effects on the morphological traits, but it significantly improved the LRWC, Pn, quantum efficiency of photosystem II (Fv/Fm), chlorophyll pigments, nitrogenous compounds and reduced lipid peroxidation. P fertilization improved E. grandis seedling growth under well‐watered conditions but also ameliorated some leaf physiological traits under drought conditions. The effects of P fertilization are mainly due to the enhancement of plant N nutrition. Therefore, P can be used as a fertilizer to improve growth and production in the face of future climate change.  相似文献   
12.
13.
14.
We investigated the relationship between linker histone stoichiometry and the acetylation of core histones in vivo. Exponentially growing cell lines induced to overproduce either of two H1 variants, H1(0) or H1c, displayed significantly reduced rates of incorporation of [(3)H]acetate into all four core histones. Pulse-chase experiments indicated that the rates of histone deacetylation were similar in all cell lines. These effects were also observed in nuclei isolated from these cells upon labeling with [(3)H]acetyl-CoA. Nuclear extracts prepared from control and H1-overexpressing cell lines displayed similar levels of histone acetylation activity on chromatin templates prepared from control cells. In contrast, extracts prepared from control cells were significantly less active on chromatin templates prepared from H1-overexpressing cells than on templates prepared from control cells. Reduced levels of acetylation in H1-overproducing cell lines do not appear to depend on higher order chromatin structure, because it persists even after digestion of the chromatin with micrococcal nuclease. The results suggest that alterations in chromatin structure, resulting from changes in linker histone stoichiometry may modulate the levels or rates of core histone acetylation in vivo.  相似文献   
15.
16.
In higher eukaryotes, DNA polymerase (pol) beta resides in the nucleus and participates primarily in DNA repair. The DNA polymerase beta from the trypanosomatid Crithidia fasciculata, however, was the first mitochondrial enzyme of this type described. Upon searching the nearly completed genome data base of the related parasite Trypanosoma brucei, we discovered genes for two pol beta-like proteins. One is approximately 70% identical to the C. fasciculata pol beta and is likely the homolog of this enzyme. The other, although approximately 30% identical within the polymerase region, has unusual structural features including a short C-terminal tail and a long N-terminal extension rich in prolines, alanines, and lysines. Both proteins, when expressed recombinantly, are active as DNA polymerases and deoxyribose phosphate lyases, but their polymerase activity optima differ with respect to pH and KCl and MgCl2 concentrations. Remarkably, green fluorescent protein fusion proteins and immunofluorescence demonstrate that both are mitochondrial, but their locations with respect to the mitochondrial DNA (kinetoplast DNA network) in this organism are strikingly different.  相似文献   
17.
DNA minor groove ligands provide a paradigm for double-stranded DNA recognition, where common structural motifs provide a crescent shape that matches the helix turn. Since minor groove ligands are useful in medicine, new ligands with improved binding properties based on the structural information about DNA-ligand complexes could be useful in developing new drugs. Here, two new synthetic analogues of AT specific Hoechst 33258 5-(4-methylpiperazin-1-yl)-2-[2'-(3,4-dimethoxyphenyl)-5'-benzimidazolyl] benzimidazole (DMA) and 5-(4-methylpiperazin-1-yl)-2-[2'[2'-(4-hydroxy-3-methoxyphenyl)-5' '-benzimidazolyl]-5'-benzimidazolyl] benzimidazole (TBZ) were evaluated for their DNA binding properties. Both analogues are bisubstituted on the phenyl ring. DMA contains two ortho positioned methoxy groups, and TBZ contains a phenolic group at C-4 and a methoxy group at C-3. Fluorescence yield upon DNA binding increased 100-fold for TBZ and 16-fold for DMA. Like the parent compound, the new ligands showed low affinity to GC-rich (K approximately 4 x 10(7) M(-1)) relative to AT-rich sequences (K approximately 5 x 10(8) M(-1)), and fluorescence lifetime and anisotropy studies suggest two distinct DNA-ligand complexes. Binding studies indicate expanded sequence recognition for TBZ (8-10 AT base pairs) and tighter binding (DeltaT(m) of 23 degrees C for d (GA(5)T(5)C). Finally, EMSA and equilibrium binding titration studies indicate that TBZ preferentially binds highly hydrated duplex domains with altered A-tract conformations d (GA(4)T(4)C)(2) (K= 3.55 x 10(9) M(-1)) and alters its structure over d (GT(4)A(4)C)(2) (K = 3.3 x 10(8) M(-1)) sequences. Altered DNA structure and higher fluorescence output for the bound fluorophore are consistent with adaptive binding and a constrained final complex. Therefore, the new ligands provide increased sequence and structure selective recognition and enhanced fluorescence upon minor groove binding, features that can be useful for further development as probes for chromatin structure stability.  相似文献   
18.
The use of unmodified starches in frozen foods is severely limited by the undesirable textural changes that occur after freezing and thawing. Retrogradation of glucan chains leads to syneresis, a separation of the starch gel and water phases. Stabilization of the starch structure is normally achieved by chemical modification to prevent these changes from occurring. We have now created a freeze-thaw-stable potato starch by alteration of starch composition and structure by genetic modification. An amylose-free starch with short-chain amylopectin was produced by simultaneous antisense downregulation of three starch synthase genes. This starch is extremely freeze-thaw-stable and shows no syneresis even after five freeze-thaw cycles. The use of this starch has potential for environmental and consumer benefits because its production requires no chemical modification.  相似文献   
19.
Maintaining the integrity of the genome requires the high fidelity duplication of the genome and the ability of the cell to recognize and repair DNA lesions. The heterotrimeric single stranded DNA (ssDNA) binding complex Replication Protein A (RPA) is central to multiple DNA processes, which are coordinated by RPA through its ssDNA binding function and through multiple protein-protein interactions. Many RPA interacting proteins have been reported through large genetic and physical screens; however, the number of interactions that have been further characterized is limited. To gain a better understanding of how RPA functions in DNA replication, repair, and cell cycle regulation and to identify other potential functions of RPA, a yeast two hybrid screen was performed using the yeast 70 kDa subunit, Replication Factor A1 (Rfa1), as a bait protein. Analysis of 136 interaction candidates resulted in the identification of 37 potential interacting partners, including the cell cycle regulatory protein and DNA damage clamp loader Rad24. The Rfa1-Rad24 interaction is not dependent on ssDNA binding. However, this interaction appears affected by DNA damage. The regions of both Rfa1 and Rad24 important for this interaction were identified, and the region of Rad24 identified is distinct from the region reported to be important for its interaction with Rfc2 5. This suggests that Rad24-Rfc2-5 (Rad24-RFC) recruitment to DNA damage substrates by RPA occurs, at least partially, through an interaction between the N terminus of Rfa1 and the C terminus of Rad24. The predicted structure and location of the Rad24 C-terminus is consistent with a model in which RPA interacts with a damage substrate, loads Rad24-RFC at the 5’ junction, and then releases the Rad24-RFC complex to allow for proper loading and function of the DNA damage clamp.  相似文献   
20.
HU, a widely conserved bacterial histone-like protein, regulates many genes, including those involved in stress response and virulence. Whereas ample data are available on HU-DNA communication, the knowledge on how HU perceives a signal and transmit it to DNA remains limited. In this study, we identify HupB, the HU homolog of the human pathogen Mycobacterium tuberculosis, as a component of serine/threonine protein kinase (STPK) signaling. HupB is extracted in its native state from the exponentially growing cells of M. tuberculosis H37Ra and is shown to be phosphorylated on both serine and threonine residues. The STPKs capable of modifying HupB are determined in vitro and the residues modified by the STPKs are identified for both in vivo and the in vitro proteins through mass spectrometry. Of the identified phosphosites, Thr65 and Thr74 in the DNA-embracing β-strand of the N-terminal domain of HupB (N-HupB) are shown to be crucial for its interaction with DNA. In addition, Arg55 is also identified as an important residue for N-HupB–DNA interaction. N-HupB is shown to have a diminished interaction with DNA after phosphorylation. Furthermore, hupB is shown to be maximally expressed during the stationary phase in M. tuberculosis H37Ra, while HupB kinases were found to be constitutively expressed (PknE and PknF) or most abundant during the exponential phase (PknB). In conclusion, HupB, a DNA-binding protein, with an ability to modulate chromatin structure is proposed to work in a growth-phase-dependent manner through its phosphorylation carried out by the mycobacterial STPKs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号