首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2018年   1篇
  2013年   5篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2001年   1篇
  1996年   1篇
排序方式: 共有18条查询结果,搜索用时 718 毫秒
11.

Background  

Quantification of the metabolic network of an organism offers insights into possible ways of developing mutant strain for better productivity of an extracellular metabolite. The first step in this quantification is the enumeration of stoichiometries of all reactions occurring in a metabolic network. The structural details of the network in combination with experimentally observed accumulation rates of external metabolites can yield flux distribution at steady state. One such methodology for quantification is the use of elementary modes, which are minimal set of enzymes connecting external metabolites. Here, we have used a linear objective function subject to elementary modes as constraint to determine the fluxes in the metabolic network of Corynebacterium glutamicum. The feasible phenotypic space was evaluated at various combinations of oxygen and ammonia uptake rates.  相似文献   
12.

Background  

The phenomenon of switch-like response to graded input signal is the theme involved in various signaling pathways in living systems. Positive feedback loops or double negative feedback loops embedded with nonlinearity exhibit these switch-like bistable responses. Such feedback regulations exist in insulin signaling pathway as well.  相似文献   
13.

Background  

Bacterial signal transduction mechanism referred to as a "two component regulatory systems" contributes to the overall adaptability of the bacteria by regulating the gene expression. Osmoregulation is one of the well-studied two component regulatory systems comprising of the sensor, EnvZ and the cognate response regulator, OmpR, which together control the expression of OmpC and OmpF porins in response to the osmolyte concentration.  相似文献   
14.

Background

Signaling pathways include intricate networks of reversible covalent modification cycles. Such multicyclic enzyme cascades amplify the input stimulus, cause integration of multiple signals and exhibit sensitive output responses. Regulation of glycogen synthase and phosphorylase by reversible covalent modification cycles exemplifies signal transduction by enzyme cascades. Although this system for regulating glycogen synthesis and breakdown appears similar in all tissues, subtle differences have been identified. For example, phosphatase-1, a dephosphorylating enzyme of the system, is regulated quite differently in muscle and liver. Do these small differences in regulatory architecture affect the overall performance of the glycogen cascade in a specific tissue? We address this question by analyzing the regulatory structure of the glycogen cascade system in liver and muscle cells at steady state.

Results

The glycogen cascade system in liver and muscle cells was analyzed at steady state and the results were compared with literature data. We found that the cascade system exhibits highly sensitive switch-like responses to changes in cyclic AMP concentration and the outputs are surprisingly different in the two tissues. In muscle, glycogen phosphorylase is more sensitive than glycogen synthase to cyclic AMP, while the opposite is observed in liver. Furthermore, when the liver undergoes a transition from starved to fed-state, the futile cycle of simultaneous glycogen synthesis and degradation switches to reciprocal regulation. Under such a transition, different proportions of active glycogen synthase and phosphorylase can coexist due to the varying inhibition of glycogen-synthase phosphatase by active phosphorylase.

Conclusion

The highly sensitive responses of glycogen synthase in liver and phosphorylase in muscle to primary stimuli can be attributed to distinctive regulatory designs in the glycogen cascade system. The different sensitivities of these two enzymes may exemplify the adaptive strategies employed by liver and muscle cells to meet specific cellular demands.
  相似文献   
15.

Background  

The chemical property and biological function of a protein is a direct consequence of its primary structure. Several algorithms have been developed which determine alignment and similarity of primary protein sequences. However, character based similarity cannot provide insight into the structural aspects of a protein. We present a method based on spectral similarity to compare subsequences of amino acids that behave similarly but are not aligned well by considering amino acids as mere characters. This approach finds a similarity score between sequences based on any given attribute, like hydrophobicity of amino acids, on the basis of spectral information after partial conversion to the frequency domain.  相似文献   
16.

Introduction

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathology of rheumatoid arthritis (RA), particularly as vulnerable personality types are exposed to chronic stress. Emotions are powerful modulators of stress responses. However, little is known about whether patients with RA process emotions differently to matched controls. In this study we: 1) assessed whether the trait emotional intelligence (trait EI) scores of patients with RA differ from healthy controls at the facet level; 2) explored any subgroups in RA, in terms of trait EI and common risk factors.

Methods

A total of 637 patients with RA were compared to 496 controls on the trait EI Questionnaire (TEIQue). RA subgroups were explored in terms of trait EI, rheumatoid factor status (RF+/-), depression and time from onset of symptoms until diagnosis (diagnostic delay).

Results

The RA group rated themselves lower on Adaptability, Stress-management, Emotion management, Self-esteem, Sociability, Assertiveness, Impulsiveness and Well-being, and higher on Empathy and Relationships than healthy controls. The RF- subtype reported more time with depression (25.2 vs. 11.3 months), a longer diagnostic delay (3.0 vs. 1.7 years), and greater emotional expression (5.15 vs. 4.72), than the RF+ subtype. These differences were significant at the P <0.05 level, but not following strict Bonferroni corrections and should therefore be treated as indicative only. RF- patients with a longer diagnostic delay reported depression lasting three times longer (42.7 months), when compared to three other subtypes (11.0 to 12.7 months).

Conclusions

RA patients and controls differ in their emotion-related personality traits, as operationalized by trait EI. These differences may make people with RA more susceptible to chronic stress and HPA-axis dysregulation. RA may be a highly heterogeneous illness where at least two subtypes may be characterized by personality, psychiatric and immunological differences. RF- status, as well as diagnostic delay and emotional expression, may predict future risk of depression. Research on the causes of RA could benefit from a systems science approach.  相似文献   
17.

Background  

Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues) with special emphasis to protein interfaces.  相似文献   
18.
The fungus Cochliobolus carbonum causes leaf spot disease of maize. Highly virulent isolates of the pathogen produce a host-selective, peptide toxin that is active against susceptible genotypes of maize. Prior to infection, spores must germinate and differentiate appressoria, structures specialized for leaf penetration. Analysis of spore germination fluids by plasma desorption mass spectrometry, which allowed detection of as little as 0.5 ng toxin, revealed that spores induced to form appressoria in vitro synthesized and released the toxin at a time coincident with maturation of appressoria. Spores incubated under conditions that did not induce appressorium formation failed to produce toxin. These observations indicate that synthesis of the host-selective toxin, which is essential for successful pathogenesis of maize by C. carbonum, is regulated by infection-related morphogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号