首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   3篇
  278篇
  2022年   4篇
  2021年   3篇
  2020年   4篇
  2019年   8篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   12篇
  2014年   9篇
  2013年   14篇
  2012年   25篇
  2011年   13篇
  2010年   10篇
  2009年   15篇
  2008年   12篇
  2007年   11篇
  2006年   8篇
  2005年   15篇
  2004年   10篇
  2003年   8篇
  2002年   5篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1983年   1篇
  1982年   3篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1974年   1篇
  1973年   4篇
  1972年   7篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
41.
The human oral metagenomic DNA cloned into plasmid pUC19 was used to construct a DNA library in Escherichia coli. Functional screening of 40,000 metagenomic clones led to identification of a clone LIP2 that exhibited halo on tributyrin agar plate. Sequence analysis of LIP2 insert DNA revealed a 939 bp ORF (omlip1) which showed homology to lipase 1 of Acinetobacter junii SH205. The omlip1 ORF was cloned and expressed in E. coli BL21 (DE3) using pET expression system. The recombinant enzyme was purified to homogeneity and the biochemical properties were studied. The purified OMLip1 hydrolyzed p-nitrophenyl esters and triacylglycerol esters of medium and long chain fatty acids, indicating the enzyme is a true lipase. The purified protein exhibited a pH and temperature optima of 7 and 37 °C respectively. The lipase was found to be stable at pH range of 6–7 and at temperatures lower than 40 °C. Importantly, the enzyme activity was unaltered, by the presence or absence of many divalent cations. The metal ion insensitivity of OMLip1offers its potential use in industrial processes.  相似文献   
42.
In this paper we present a detailed atomic model for a protofilament, the most basic organization level, of the amyloid fibre formed by the peptide DFNKF. This pentapeptide is a segment derived from the human calcitonin, a natural amyloidogenic protein. Our model, which represents the outcome of extensive explicit solvent molecular dynamics (MD) simulations of different strand/sheet organizations, is a single beta-sheet filament largely without a hydrophobic core. Nevertheless, this structure is capable of reproducing the main features of the characteristic amyloid fibril organization and provides clues to the molecular basis of its experimental aggregation behaviour. Our results show that the side chains' chemical diversity induces the formation of a complex network of interactions that finally determine the microscopic arrangement of the strands at the protofilament level. This network of interactions, consisting of both side chain-side chain and backbone-side chain interactions, confers on the final single beta-sheet arrangement an unexpected stability, both by enhancing the association of related chemical groups and, at the same time, by shielding the hydrophobic segments from the polar solvent. The chemical physical characterization of this protofilament provides hints to the possible thermodynamical basis of the supra molecular organization that allows the formation of the filaments by lateral association of the preformed protofibrils. Its regular, highly polarized structure shows how other protofilaments can assemble. In terms of structural biology, our results clearly indicate that an amyloid organization implies a degree of complexity far beyond a simple nonspecific association of peptide strands via amide hydrogen bonds.  相似文献   
43.
Gunasekaran K  Ma B  Nussinov R 《Proteins》2004,57(3):433-443
Allostery involves coupling of conformational changes between two widely separated binding sites. The common view holds that allosteric proteins are symmetric oligomers, with each subunit existing in "at least" two conformational states with a different affinity for ligands. Recent observations such as the allosteric behavior of myoglobin, a classical example of a nonallosteric protein, call into question the existing allosteric dogma. Here we argue that all (nonfibrous) proteins are potentially allosteric. Allostery is a consequence of re-distributions of protein conformational ensembles. In a nonallosteric protein, the binding site shape may not show a concerted second-site change and enzyme kinetics may not reflect an allosteric transition. Nevertheless, appropriate ligands, point mutations, or external conditions may facilitate a population shift, leading a presumably nonallosteric protein to behave allosterically. In principle, practically any potential drug binding to the protein surface can alter the conformational redistribution. The question is its effectiveness in the redistribution of the ensemble, affecting the protein binding sites and its function. Here, we review experimental observations validating this view of protein allostery.  相似文献   
44.
Naturally occurring IgG antibodies are bivalent and monospecific. Bispecific antibodies having binding specificities for two different antigens can be produced using recombinant technologies and are projected to have broad clinical applications. However, co-expression of multiple light and heavy chains often leads to contaminants and pose purification challenges. In this work, we have modified the CH3 domain interface of the antibody Fc region with selected mutations so that the engineered Fc proteins preferentially form heterodimers. These novel mutations create altered charge polarity across the Fc dimer interface such that coexpression of electrostatically matched Fc chains support favorable attractive interactions thereby promoting desired Fc heterodimer formation, whereas unfavorable repulsive charge interactions suppress unwanted Fc homodimer formation. This new Fc heterodimer format was used to produce bispecific single chain antibody fusions and monovalent IgGs with minimal homodimer contaminants. The strategy proposed here demonstrates the feasibility of robust production of novel Fc-based heterodimeric molecules and hence broadens the scope of bispecific molecules for therapeutic applications.  相似文献   
45.
An antifungal peptide, MMGP1, was recently identified from marine metagenome. The mechanism of cellular internalization of this peptide in Candida albicans was studied using fluorescein 5–isothiocynate (Sigma, California, USA) labeling followed by fluorescence microscopy and flow cytometry analyses. The peptide could enter C. albicans cells even at 4 °C, where all energy‐dependent transport mechanisms are blocked. In addition, the peptide internalization was not affected by the endocytic inhibitor, sodium azide. The kinetic study has shown that the peptide was initially localized on cell membrane and subsequently internalized into cytosol. The MMGP1 treatment exhibited time‐dependent cytotoxicity in C. albicans as evidenced by SYTOX Green (Molecular Probes Inc., Eugene, Oreg) uptake. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
46.
The presence of aspartic protease inhibitor in filarial parasite Brugia malayi (Bm-Aspin) makes it interesting to study because of the fact that the filarial parasite never encounters the host digestive system. Here, the aspartic protease inhibition kinetics of Bm-Aspin and its NMR structural characteristics have been investigated. The overall aim of this study is to explain the inhibition and binding properties of Bm-Aspin from its structural point of view. UV-spectroscopy and multi-dimensional NMR are the experiments that have been performed to understand the kinetic and structural properties of Bm-Aspin respectively. The human aspartic proteases that are considered for this study are pepsin, renin, cathepsin-E and cathepsin-D. The results of this analysis performed with the specific substrate [Phe-Ala-Ala-Phe (4-NO2)-Phe-Val-Leu (4-pyridylmethyl) ester] against aspartic proteases suggest that Bm-Aspin inhibits the activities of all four human aspartic proteases. The kinetics studies indicate that Bm-Aspin follows a competitive mode of inhibition for pepsin and cathepsin-E, non-competitive for renin and mixed mode for cathepsin-D. The triple resonance NMR experiments on Bm-Aspin suggested the feasibility of carrying out NMR studies to obtain its solution structure. The NMR titration studies on the interactions of Bm-Aspin with the proteases indicate that it undergoes fast-exchange phenomena among themselves. In addition to this, the chemical shift perturbations for some of the residues of Bm-Aspin observed from 15N-HSQC spectra upon the addition of saturated amounts of aspartic proteases suggest the binding between Bm-Aspin and human aspartic proteases. They also provide information on the variations in the intensities and mode of binding between the proteases duly corroborating with the results from the protease inhibition assay method.  相似文献   
47.
AIMS: To optimize the media components for xylanase production by Aspergillus versicolor MKU3 in solid-state fermentation (SSF). METHODS AND RESULTS: Medium optimization was carried out using De Moe's fractional factorial design with seven components. Maximum production of xylanase 3249.9 U g(-1) was obtained in SSF with an optimized medium containing (g l(-1)): NaNO(3), 20; K(2)HPO(4), 20; MgSO(4), 10; FeSO(4), 0.001; KCl, 1; peptone, 10 and yeast extract, 10. Four components namely NaNO(3), MgSO(4), peptone and K(2)HPO(4) significantly increased the xylanase production by A. versicolor MKU3. CONCLUSIONS: Fractional factorial design was used to optimize the seven components in the fermentation medium for SSF. The optimized media increased xylanase production by 3.4-fold. SIGNIFICANCE AND IMPACT OF THE STUDY: Aspergillus versicolor MKU3 produced maximum xylanase after two steps of media optimization under alkaline condition. This medium will be significant value for xylanase production in SSF.  相似文献   
48.
Hydroxyl radicals induce hinge cleavage in a human IgG1 molecule via initial radical formation at the first hinge Cys231 followed by electron transfer to the upper hinge residues. To enable engineering of a stable monoclonal antibody hinge, we investigated the role of the hinge His229 residue using structure modeling and site-directed mutagenesis. Direct involvement of His229 in the reaction mechanism is suggested by a 75–85% reduction of the hinge cleavage for variants in which His229 was substituted with either Gln, Ser, or Ala. In contrast, mutation of Lys227 to Gln, Ser, or Ala increased hinge cleavage. However, the H229S/K227S double mutant shows hinge cleavage levels similar to that of the single H229S variant, further revealing the importance of His229. Examination of the hinge structure shows that His229 is capable of forming hydrogen bonds with surrounding residues. These observations led us to hypothesize that the imidazole ring of His229 may function to facilitate the cleavage by forming a transient radical center that is capable of extracting a proton from neighboring residues. The work presented here suggests the feasibility of engineering a new generation of monoclonal antibodies capable of resisting hinge cleavage to improve product stability and efficacy.  相似文献   
49.
50.
In the past few decades, scientists from all over the world have taken a keen interest in novel functional units such as small regulatory RNAs, small open reading frames, pseudogenes, transposons, integrase binding attB/attP sites, repeat elements within the bacterial intergenic regions (IGRs) and in the analysis of those junk regions for ge- nomic complexity. Here we have developed a web server, named Junker, to facilitate the in-depth analysis of IGRs for examining their length distribution, four-quadrant...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号