首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
  2023年   1篇
  2022年   3篇
  2020年   1篇
  2019年   4篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有32条查询结果,搜索用时 62 毫秒
11.

Background

As human embryonic stem cell (hESC) lines can be derived via multiple means, it is important to determine particular characteristics of individual lines that may dictate the applications to which they are best suited. The objective of this work was to determine points of equivalence and differences between conventionally-derived hESC and parthenote-derived hESC lines (phESC) in the undifferentiated state and during neural differentiation.

Methodology/Principal Findings

hESC and phESC were exposed to the same expansion conditions and subsequent neural and retinal pigmented epithelium (RPE) differentiation protocols. Growth rates and gross morphology were recorded during expansion. RTPCR for developmentally relevant genes and global DNA methylation profiling were used to compare gene expression and epigenetic characteristics. Parthenote lines proliferated more slowly than conventional hESC lines and yielded lower quantities of less mature differentiated cells in a neural progenitor cell (NPC) differentiation protocol. However, the cell lines performed similarly in a RPE differentiation protocol. The DNA methylation analysis showed similar general profiles, but the two cell types differed in methylation of imprinted genes. There were no major differences in gene expression between the lines before differentiation, but when differentiated into NPCs, the two cell types differed in expression of extracellular matrix (ECM) genes.

Conclusions/Significance

These data show that hESC and phESC are similar in the undifferentiated state, and both cell types are capable of differentiation along neural lineages. The differences between the cell types, in proliferation and extent of differentiation, may be linked, in part, to the observed differences in ECM synthesis and methylation of imprinted genes.  相似文献   
12.
13.
Corynebacterium 2,5-Diketo-D-gluconic acid reductase (2,5-DKGR) catalyzes the reduction of 2,5-diketo-D-gluconic acid (2,5-DKG) to 2-Keto-L-gulonic acid (2-KLG). 2-KLG is an immediate precursor to L-ascorbic acid (vitamin C), and 2,5-DKGR is, therefore, an important enzyme in a novel industrial method for the production of vitamin C. 2,5-DKGR, as with most other members of the aldo-keto reductase (AKR) superfamily, exhibits a preference for NADPH compared to NADH as a cofactor in the stereo-specific reduction of substrate. The application of 2,5-DKGR in the industrial production of vitamin C would be greatly enhanced if NADH could be efficiently utilized as a cofactor. A mutant form of 2,5-DKGR has previously been identified that exhibits two orders of magnitude higher activity with NADH in comparison to the wild-type enzyme, while retaining a high level of activity with NADPH. We report here an X-ray crystal structure of the holo form of this mutant in complex with NADH cofactor, as well as thermodynamic stability data. By comparing the results to our previously reported X-ray structure of the holo form of wild-type 2,5-DKGR in complex with NADPH, the structural basis of the differential NAD(P)H selectivity of wild-type and mutant 2,5-DKGR enzymes has been identified.  相似文献   
14.
The aldo-keto reductases (AKR) comprise a large family of oxidoreductases with importance to both health and industrial applications. The redox chemistry of the AKRs is dependent on NAD(P)H as a cofactor. Despite a wealth of structural and biochemical data relating to the interaction of AKRs with specific inhibitors, much less is known regarding the interactions with cofactor or substrate. In particular, while many X-ray structures are available for AKR/inhibitor complexes, they are only a few examples where apo- and holo- forms can be directly compared. Thus, while the role of the cofactor in the redox chemistry is generally understood, the details of the structural dynamics associated with cofactor binding are less clear. Likewise, the structural details of both cofactor and substrate specificity are limited. In this review, we focus on details of the structural biology and molecular dynamics associated with catalysis, cofactor, and substrate binding as elucidated for those AKRs for which apo- and holo- structures are available. Understanding such dynamics may identify a new direction in the design of specific inhibitors.  相似文献   
15.
Embryonic stem cells (ESCs) are pluripotent, self‐renewing cells. These cells can be used in applications such as cell therapy, drug development, disease modeling, and the study of cellular differentiation. Investigating the interplay of epigenetics, genetics, and gene expression in control of pluripotence and differentiation could give important insights on how these cells function. One of the best known epigenetic factors is DNA methylation, which is a major mechanism for regulation of gene expression. This phenomenon is mostly seen in imprinted genes and X‐chromosome inactivation where DNA methylation of promoter regions leads to repression of gene expression. Differential DNA methylation of pluripotence‐associated genes such as Nanog and Oct4/Pou5f1 has been observed between pluripotent and differentiated cells. It is clear that tight regulation of DNA methylation is necessary for normal development. As more associations between aberrant DNA methylation and disease are reported, the demand for high‐throughput approaches for DNA methylation analysis has increased. In this article, we highlight these methods and discuss recent DNA methylation studies on ESCs. J. Cell. Biochem. 109: 1–6, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
16.
Valproic acid (VPA), used for the treatment of epilepsy and bipolar disorder, regulates several signaling pathways in brain cells. The up-regulated gene 4 (URG4/URGCP) is a novel gene located on 7p13. URG4/URGCP stimulates cyclin D1 (CCND1) mRNA expression, and URG4/URGCP silencing diminishes CCND1 mRNA expression in HepG2 cells. This study was performed to investigate the anti-cancer mechanism of action of VPA by analyzing the expression of novel gene URG4/URGCP, CCND1, p21, p53, p65 (RelA), Bax, and Bcl-2 in SHSY5Y neuroblastoma (NB) cancer cells. Cytotoxic effects of VPA in SHSY5Y were noticed in time and dose dependent manner with the IC50 doses within the range of 0.5–10 mM. IC50 doses in the SHSY5Y were detected as 7.5 mM. Expression profiles were determined by semi quantitative RT-PCR and URG4/URGCP protein change by western blot analysis. Our results suggest that VPA induces cell cycle arrest in SHSY5Y due to the decrease in URG4/URGCP, CCND1 gene expression and the increase in p65. To conclude, VPA may be a prospective agent for the treatment of NB as a single agent or in combination with other drugs. Thus, more studies should be designed to find a safe dose with the best effects of VPA.  相似文献   
17.
Glioblastoma (GBM) is an aggressive and lethal cancer, accounting for the majority of primary brain tumors in adults. GBMs are characterized by large and small alterations in genes that control cell growth, apoptosis, angiogenesis, and invasion. Epigenetic alterations also affect the expression of cancer genes, either alone or in combination with genetic mechanisms. The current evidence suggests that hypermethylation of promoter CpG islands is a common epigenetic event in a variety of human cancers. A subset of GBMs is also characterized by a locus-specific and genome-wide decrease in DNA methylation. Epigenetic alterations are important in the molecular pathology of GBM. However, there are very limited data about these epigenetic alterations in GBM. Alterations in promoter methylations are important to understand because histone deacetylases are targets for drugs that are in clinical trial for GBMs. The aim of the current study was to investigate whether the promoter hypermethylation of putative tumor suppressor genes was involved in GBM. We examined the methylation status at the promoter regions of GATA6, MGMT, and FHIT using the methylation-specific polymerase chain reaction in 61 primary GBMs. Our results reveal that there is no promoter hypermethylation of FHIT in the examined GBM tissue specimens. In contrast, the promoter hypermethylation of GATA6 and MGMT was detected in 42.8 and 11.11% of GBMs, respectively. The frequency of MGMT promoter hypermethylation was low in the group of patients we evaluated. In conclusion, our study demonstrates that promoter hypermethylation of MGMT is a common event in GBMs, whereas GATA6 is epigenetically affected in GBMs. Furthermore, inactivation of FHIT by epigenetic mechanisms in GBM may not be associated with brain tumorigenesis.  相似文献   
18.
Background

Clear cell type renal cell carcinoma (ccRCC) is the most common renal cell carcinoma (RCC). In this study, we examined the expressions of VHL and miR-223 in ccRCC patients? tissues to investigate the possible role in the development of ccRCC.

Methods and results

This study collected five expression profiles (GSE36139, GSE3, GSE73731, GSE40435, and GSE26032) from Gene Omnibus Data. Expressions of VHL and miR-223 in paraffinized tumor and normal tissues of 100 Turkish patients' ccRCC tissues were determined by bioinformatic data mining and real-time quantitative polymerase chain reaction (qRT-PCR). The VHL gene was subjected to mutational analysis by DNA sequencing, and pVHL was analyzed using western blotting. Our study's t-test and Pearson correlation analysis showed that VHL gene expression in tumoral tissues with a???0.39-fold decrease was not significantly lower than normal tissues (p?=?0.441), and a 0.97-fold increase miR-223 (p?=?0.045) was determined by real-time PCR. Also, as a result of DNA sequence analysis performed in the VHL gene, it was found that 26% of the patients have mutations. The mutations for (VHL):c.60C>A (p.Val20=) and (VHL):c.467delA (p.Tyr156Leu) was detected for the first time in Turkish patients.

Conclusions

The present study demonstrated that the differences in the expression levels of miR-223 have the potential to be biomarkers to determine the poor prognosis in ccRCC.

  相似文献   
19.
Glioblastoma multiforme (GBM) is one of the deadliest human malignancies. A cure for GBM remains elusive, and the overall survival time is less than 1 year. Thus, the development of more efficient therapeutic approaches for the treatment of these patients is required. Induction of tumor cell death by certain phytochemicals derived from medicinal herbs and dietary plants has become a new frontier for cancer therapy research. Although the cancer suppressive effect of Ficus carica (fig) latex (FCL) has been determined in a few cancer types, the effect of this latex on GBM tumors has not been investigated. Therefore, in the current study, the anti-proliferative activity of FCL and the effect of the FCL–temozolomide (TMZ) combination were tested in the T98G, U-138 MG, and U-87 MG GBM cell lines using the WST-1 assay. The mechanism of cell death was analyzed using Annexin-V/FITC and TUNEL assays, and the effect of FCL on invasion was tested using the chick chorioallantoic membrane assay. To determine the effect of FCL on GBM progression, the expression levels of 40 GBM associated miRNAs were analyzed in T98G cells using RT-qPCR. According to the obtained data, FCL causes cell death in GBM cells with different responses to TMZ, and this effect is synergistically increased in combination with TMZ. In addition, the current study is the first to demonstrate the effect of FCL on modulation of let-7d expression, which may be an important underlying mechanism of the anti-invasive effect of this extract.  相似文献   
20.
Detailed knowledge about the fate and transport of tungsten in soils is critical to understanding and effectively addressing tungsten behavior in the environment. Recent studies have shown that tungsten anions may polymerize (depending upon concentration, pH, and aquatic geochemistry) in aquatic and soil systems. However, to date, of all soluble tungstate species only monotungstates have been scrutinized to a fair extent in adsorption studies. There is a lack of information evaluating adsorption mechanisms of mono- and polytungstates onto clay minerals. The objective of this work is to investigate the adsorption behavior of monotungstates (sodium tungstate, Na2WO4) and polytungstates (sodium metatungstate, 3Na2WO4·9WO3) onto different types of clay minerals (montmorillonite, kaolinite, illite) and an organic adsorbent (Pahokee peat). Batch equilibrium experiments as a function of concentration (adsorption isotherms) and pH (adsorption envelopes) were performed to provide information about mono- and polytungstate adsorption onto clays and Pahokee peat. Adsorption equilibrium data for mono- and polytungstates onto different types of clay minerals and Pahokee peat were modeled with Freundlich and Langmuir isotherms. The adsorption affinity of clays and Pahokee peat for monotungstates follows the order: Pahokee peat>kaolinite>montmorillonite>illite; for polytungstates, the order is as follows: kaolinite>Pahokee peat>montmorillonite>illite. Results of this study suggest that the charges of the clay mineral surface, tungsten species, and solution pH are the main factors controlling tungsten adsorption. Moreover, polymeric tungsten species (i.e., metatungstate) appear to be more mobile in the environment than monomeric tungstate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号