首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2636篇
  免费   135篇
  国内免费   3篇
  2023年   21篇
  2022年   31篇
  2021年   77篇
  2020年   51篇
  2019年   55篇
  2018年   70篇
  2017年   69篇
  2016年   85篇
  2015年   139篇
  2014年   113篇
  2013年   199篇
  2012年   194篇
  2011年   192篇
  2010年   133篇
  2009年   96篇
  2008年   123篇
  2007年   129篇
  2006年   120篇
  2005年   105篇
  2004年   78篇
  2003年   77篇
  2002年   72篇
  2001年   38篇
  2000年   27篇
  1999年   29篇
  1998年   15篇
  1997年   18篇
  1995年   15篇
  1992年   14篇
  1991年   18篇
  1990年   19篇
  1989年   16篇
  1988年   16篇
  1987年   14篇
  1986年   12篇
  1985年   16篇
  1984年   22篇
  1983年   16篇
  1982年   19篇
  1981年   12篇
  1979年   14篇
  1977年   13篇
  1976年   13篇
  1975年   14篇
  1974年   12篇
  1972年   14篇
  1971年   11篇
  1968年   11篇
  1967年   11篇
  1966年   10篇
排序方式: 共有2774条查询结果,搜索用时 15 毫秒
991.
Rheumatoid arthritis (RA) is a prototypical autoimmune arthritis affecting nearly 1% of the world population and is a significant cause of worldwide disability. Though prior studies have demonstrated the appearance of RA-related autoantibodies years before the onset of clinical RA, the pattern of immunologic events preceding the development of RA remains unclear. To characterize the evolution of the autoantibody response in the preclinical phase of RA, we used a novel multiplex autoantigen array to evaluate development of the anti-citrullinated protein antibodies (ACPA) and to determine if epitope spread correlates with rise in serum cytokines and imminent onset of clinical RA. To do so, we utilized a cohort of 81 patients with clinical RA for whom stored serum was available from 1-12 years prior to disease onset. We evaluated the accumulation of ACPA subtypes over time and correlated this accumulation with elevations in serum cytokines. We then used logistic regression to identify a profile of biomarkers which predicts the imminent onset of clinical RA (defined as within 2 years of testing). We observed a time-dependent expansion of ACPA specificity with the number of ACPA subtypes. At the earliest timepoints, we found autoantibodies targeting several innate immune ligands including citrullinated histones, fibrinogen, and biglycan, thus providing insights into the earliest autoantigen targets and potential mechanisms underlying the onset and development of autoimmunity in RA. Additionally, expansion of the ACPA response strongly predicted elevations in many inflammatory cytokines including TNF-α, IL-6, IL-12p70, and IFN-γ. Thus, we observe that the preclinical phase of RA is characterized by an accumulation of multiple autoantibody specificities reflecting the process of epitope spread. Epitope expansion is closely correlated with the appearance of preclinical inflammation, and we identify a biomarker profile including autoantibodies and cytokines which predicts the imminent onset of clinical arthritis.  相似文献   
992.
The bicuspid aortic valve (BAV) is the most common congenital cardiac anomaly and is frequently associated with calcific aortic valve disease (CAVD). The most prevalent type-I morphology, which results from left-/right-coronary cusp fusion, generates different hemodynamics than a tricuspid aortic valve (TAV). While valvular calcification has been linked to genetic and atherogenic predispositions, hemodynamic abnormalities are increasingly pointed as potential pathogenic contributors. In particular, the wall shear stress (WSS) produced by blood flow on the leaflets regulates homeostasis in the TAV. In contrast, WSS alterations cause valve dysfunction and disease. While such observations support the existence of synergies between valvular hemodynamics and biology, the role played by BAV WSS in valvular calcification remains unknown. The objective of this study was to isolate the acute effects of native BAV WSS abnormalities on CAVD pathogenesis. Porcine aortic valve leaflets were subjected ex vivo to the native WSS experienced by TAV and type-I BAV leaflets for 48 hours. Immunostaining, immunoblotting and zymography were performed to characterize endothelial activation, pro-inflammatory paracrine signaling, extracellular matrix remodeling and markers involved in valvular interstitial cell activation and osteogenesis. While TAV and non-coronary BAV leaflet WSS essentially maintained valvular homeostasis, fused BAV leaflet WSS promoted fibrosa endothelial activation, paracrine signaling (2.4-fold and 3.7-fold increase in BMP-4 and TGF-β1, respectively, relative to fresh controls), catabolic enzyme secretion (6.3-fold, 16.8-fold, 11.7-fold, 16.7-fold and 5.5-fold increase in MMP-2, MMP-9, cathepsin L, cathepsin S and TIMP-2, respectively) and activity (1.7-fold and 2.4-fold increase in MMP-2 and MMP-9 activity, respectively), and bone matrix synthesis (5-fold increase in osteocalcin). In contrast, BAV WSS did not significantly affect α-SMA and Runx2 expressions and TIMP/MMP ratio. This study demonstrates the key role played by BAV hemodynamic abnormalities in CAVD pathogenesis and suggests the dependence of BAV vulnerability to calcification on the local degree of WSS abnormality.  相似文献   
993.
994.
995.
Bharati A  Kar M  Sabat SC 《PloS one》2012,7(6):e38942
Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo), behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the Q(B); the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth.  相似文献   
996.
997.
998.
Chemokines regulates the trafficking of leukocytes to the site of inflammation hence may be implicated in cardiac events. Currently no consistent effects have been revealed their role in acute myocardial infarction (MI). The aim of current study was to investigate the impact of human chemokine receptor genetic variants, CCR5-Δ32 insertion/deletion, CCR5-59029-A/G, CX3CR1-V249I and CX3CR1-T280 M on acute MI. 230 acute MI and 300 controls were examined. Patients carrying CCR5-Δ32 genotype were at three times higher risk of developing MI odds ratio (OR, 3.24, CI 1.127–9.356, P = 0.04). Significant association was found with risk of acute MI in recipients who possessed homozygous 59029-A allele (OR 1.47, CI 1.03–2.09, P = 0.03). While CX3CR1-I249 and M280 were found to be protective in MI patients with OR 0.46, CI 0.32–0.66, P < 0.0001 and OR 0.36, CI 0.24–0.55, P < 0.0001, respectively. It might be possible that risk of acute MI is associated with genetic variation in chemokine receptors, i.e., CCR5 and CX3CR1.  相似文献   
999.
1000.
The natural switch from fever to hypothermia observed in the most severe cases of systemic inflammation is a phenomenon that continues to puzzle clinicians and scientists. The present study was the first to evaluate in direct experiments how the development of hypothermia vs. fever during severe forms of systemic inflammation impacts the pathophysiology of this malady and mortality rates in rats. Following administration of bacterial lipopolysaccharide (LPS; 5 or 18 mg/kg) or of a clinical Escherichia coli isolate (5 × 10(9) or 1 × 10(10) CFU/kg), hypothermia developed in rats exposed to a mildly cool environment, but not in rats exposed to a warm environment; only fever was revealed in the warm environment. Development of hypothermia instead of fever suppressed endotoxemia in E. coli-infected rats, but not in LPS-injected rats. The infiltration of the lungs by neutrophils was similarly suppressed in E. coli-infected rats of the hypothermic group. These potentially beneficial effects came with costs, as hypothermia increased bacterial burden in the liver. Furthermore, the hypotensive responses to LPS or E. coli were exaggerated in rats of the hypothermic group. This exaggeration, however, occurred independently of changes in inflammatory cytokines and prostaglandins. Despite possible costs, development of hypothermia lessened abdominal organ dysfunction and reduced overall mortality rates in both the E. coli and LPS models. By demonstrating that naturally occurring hypothermia is more advantageous than fever in severe forms of aseptic (LPS-induced) or septic (E. coli-induced) systemic inflammation, this study provides new grounds for the management of this deadly condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号