首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9737篇
  免费   935篇
  国内免费   1243篇
  2024年   41篇
  2023年   197篇
  2022年   417篇
  2021年   698篇
  2020年   522篇
  2019年   559篇
  2018年   518篇
  2017年   395篇
  2016年   535篇
  2015年   682篇
  2014年   874篇
  2013年   842篇
  2012年   1001篇
  2011年   861篇
  2010年   475篇
  2009年   474篇
  2008年   499篇
  2007年   442篇
  2006年   325篇
  2005年   280篇
  2004年   247篇
  2003年   157篇
  2002年   175篇
  2001年   79篇
  2000年   85篇
  1999年   65篇
  1998年   52篇
  1997年   47篇
  1996年   36篇
  1995年   41篇
  1994年   38篇
  1993年   23篇
  1992年   29篇
  1991年   31篇
  1990年   31篇
  1989年   33篇
  1988年   14篇
  1987年   19篇
  1986年   11篇
  1985年   9篇
  1983年   11篇
  1982年   8篇
  1981年   4篇
  1979年   3篇
  1977年   5篇
  1973年   3篇
  1966年   2篇
  1962年   2篇
  1950年   2篇
  1940年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Acute myeloid leukaemia (AML) remains a therapeutic challenge and improvements in chemotherapy are needed. 4‐Amino‐2‐trifluoromethyl‐phenyl retinate (ATPR), a novel all‐trans retinoic acid (ATRA) derivative designed and synthesized by our team, has been proven to show superior anticancer effect compared with ATRA on various cancers. However, its potential effect on AML remains largely unknown. Lactate dehydrogenase B (LDHB) is the key glycolytic enzyme that catalyses the interconversion between pyruvate and lactate. Currently, little is known about the role of LDHB in AML. In this study, we found that ATPR showed antileukaemic effects with RARα dependent in AML cells. LDHB was aberrantly overexpressed in human AML peripheral blood mononuclear cell (PBMC) and AML cell lines. A lentiviral vector expressing LDHB‐targeting shRNA was constructed to generate a stable AML cells with low expression of LDHB. The effect of LDHB knockdown on differentiation and cycle arrest of AML cells was assessed in vitro and vivo, including involvement of Raf/MEK/ERK signalling. Finally, these data suggested that ATPR showed antileukaemic effects by RARα/LDHB/ ERK‐glycolysis signalling axis. Further studies should focus on the underlying leukaemia‐promoting mechanisms and investigate LDHB as a therapeutic target.  相似文献   
92.
Ginseng and the seed of Zizyphus jujuba var. spinosa, which are traditional Chinese medicinal materials, were often used in ancient Chinese recipes as a pair of medicines. They can replenish the primordial qi and tonify the spleen. This study investigated the effects of ginseng and the seed of Zizyphus jujuba var. spinosa (GS) extract on gut microbiota diversity in rats with spleen deficiency syndrome (SDS). A total of 52 compounds (including 16 flavonoids, 35 saponins, and 1 alkaloid) were identified and analyzed from the GS extract by UPLC‐Q‐Orbitrap‐MS/MS. The GS extract significantly increased the relative abundance of Firmicutes and Bacteroidetes in rats with SDS but decreased that of Proteobacteria and Actinobacteria. At the genus level, the GS extract significantly increased the relative abundance of Lactobacillus and Bifidobacterium in rats with SDS but decreased that of Streptococcus, Escherichia‐Shigella, Veillonella, and Enterococcus. In addition, the GS extract influenced glucose and amino acid metabolism. In summary, the results showed that the GS extract changed the structure and diversity of gut microbiota in rats with SDS and balanced the metabolic process.  相似文献   
93.
The traditional Zn/MnO2 battery has attracted great interest due to its low cost, high safety, high output voltage, and environmental friendliness. However, it remains a big challenge to achieve long‐term stability, mainly owing to the poor reversibility of the cathode reaction. Different from previous studies where the cathode redox reaction of MnO2/MnOOH is in solid state with limited reversibility, here a new aqueous rechargeable Zn/MnO2 flow battery is constructed with dissolution–precipitation reactions in both cathodes (Mn2+/MnO2) and anodes (Zn2+/Zn), which allow mixing of anolyte and catholyte into only one electrolyte and remove the requirement for an ion selective membrane for cost reduction. Impressively, this new battery exhibits a high discharge voltage of ≈1.78 V, good rate capability (10C discharge), and excellent cycling stability (1000 cycles without decay) at the areal capacity ranging from 0.5 to 2 mAh cm‐2. More importantly, this battery can be readily enlarged to a bench scale flow cell of 1.2 Ah with good capacity retention of 89.7% at the 500th cycle, displaying great potential for large‐scale energy storage.  相似文献   
94.
Single‐layered organic solar cells (OSCs) using nonfullerene acceptors have reached 16% efficiency. Such a breakthrough has inspired new sparks for the development of the next generation of OSC materials. In addition to the optimization of electronic structure, it is important to investigate the essential solid‐state structure that guides the high efficiency of bulk heterojunction blends, which provides insight in understanding how to pair an efficient donor–acceptor mixture and refine film morphology. In this study, a thorough analysis is executed to reveal morphology details, and the results demonstrate that Y6 can form a unique 2D packing with a polymer‐like conjugated backbone oriented normal to the substrate, controlled by the processing solvent and thermal annealing conditions. Such morphology provides improved carrier transport and ultrafast hole and electron transfer, leading to improved device performance, and the best optimized device shows a power conversion efficiency of 16.88% (16.4% certified). This work reveals the importance of film morphology and the mechanism by which it affects device performance. A full set of analytical methods and processing conditions are executed to achieve high efficiency solar cells from materials design to device optimization, which will be useful in future OSC technology development.  相似文献   
95.
Solar energy is one of the most abundant renewable energy sources. For efficient utilization of solar energy, photovoltaic technology is regarded as the most important source. However, due to the intermittent and unstable characteristics of solar radiation, photoelectric conversion (PC) devices fail to meet the requirements of continuous power output. With the development of rechargeable electric energy storage systems (ESSs) (e.g., supercapacitors and batteries), the integration of a PC device and a rechargeable ESS has become a promising approach to solving this problem. The so‐called integrated photorechargeable ESSs which can directly store sunlight generated electricity in daylight and reversibly release it at night time, has a huge potential for future applications. This review summarizes the development of several types of mainstream integrated photorechargeable ESSs and introduces different working mechanisms for each photorechargeable ESS in detail. Several general perspectives on challenges and future development in the field are also provided.  相似文献   
96.
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage.  相似文献   
97.
Carbon dots have been recognized as one of the most promising candidates for the oxygen reduction reaction (ORR) in alkaline media. However, the desired ORR performance in metal–air batteries is often limited by the moderate electrocatalytic activity and the lack of a method to realize good dispersion. To address these issues, herein a biomass‐deriving method is reported to achieve the in situ phosphorus doping (P‐doping) of carbon dots and their simultaneous decoration onto graphene matrix. The resultant product, namely P‐doped carbon dot/graphene (P‐CD/G) nanocomposites, can reach an ultrahigh P‐doping level for carbon nanomaterials. The P‐CD/G nanocomposites are found to exhibit excellent ORR activity, which is highly comparable to the commercial Pt/C catalysts. When used as the cathode materials for a primary liquid Al–air battery, the device shows an impressive power density of 157.3 mW cm?2 (comparing to 151.5 mW cm?2 of a similar Pt/C battery). Finally, an all‐solid‐state flexible Al–air battery is designed and fabricated based on our new nanocomposites. The device exhibits a stable discharge voltage of ≈1.2 V upon different bending states. This study introduces a unique biomass‐derived material system to replace the noble metal catalysts for future portable and wearable electronic devices.  相似文献   
98.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   
99.
Although 2D Ti3C2Tx is a good candidate for supercapacitors, the restacking of nanosheets hinders the ion transport significantly at high scan rates, especially under practical mass loading (>10 mg cm?2) and thickness (tens of microns). Here, Ti3C2Tx‐NbN hybrid film is designed by self‐assembling Ti3C2Tx with 2D arrays of NbN nanocrystals. Working as an interlayer spacer of Ti3C2Tx, NbN facilitates the ion penetration through its 2D porous structure; even at extremely high scan rates. The hybrid film shows a thickness‐independent rate performance (almost the same rate capabilities from 2 to 20 000 mV s?1) for 3 and 50 µm thick electrodes. Even a 109 µm thick Ti3C2Tx‐NbN electrode shows a better rate performance than 25 µm thick pure Ti3C2Tx electrodes. This method may pave a way to controlling ion transport in electrodes composed of 2D conductive materials, which have potential applications in high‐rate energy storage and beyond.  相似文献   
100.
Rechargeable aqueous Zn/MnO2 batteries are very attractive large‐scale energy storage technologies, but still suffer from limited cycle life and low capacity. Here the novel adoption of a near‐neutral acetate‐based electrolyte (pH ≈ 6) is presented to promote the two‐electron Mn4+/Mn2+ redox reaction and simultaneously enable a stable Zn anode. The acetate anion triggers a highly reversible MnO2/Mn2+ reaction, which ensures high capacity and avoids the issue of structural collapse of MnO2. Meanwhile, the anode‐friendly electrolyte enables a dendrite‐free Zn anode with outstanding stability and high plating/stripping Coulombic efficiency (99.8%). Hence, a high capacity of 556 mA h g?1, a lifetime of 4000 cycles without decay, and excellent rate capability up to 70 mA cm?2 are demonstated in this new near‐neutral aqueous Zn/MnO2 battery by simply manipulating the salt anion in the electrolyte. The acetate anion not only modifies the surface properties of MnO2 cathode but also creates a highly compatible environment for the Zn anode. This work provides a new opportunity for developing high‐performance Zn/MnO2 and other aqueous batteries based on the salt anion chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号