全文获取类型
收费全文 | 3834篇 |
免费 | 276篇 |
国内免费 | 310篇 |
专业分类
4420篇 |
出版年
2024年 | 8篇 |
2023年 | 52篇 |
2022年 | 128篇 |
2021年 | 209篇 |
2020年 | 128篇 |
2019年 | 159篇 |
2018年 | 158篇 |
2017年 | 102篇 |
2016年 | 154篇 |
2015年 | 247篇 |
2014年 | 254篇 |
2013年 | 315篇 |
2012年 | 351篇 |
2011年 | 286篇 |
2010年 | 163篇 |
2009年 | 190篇 |
2008年 | 230篇 |
2007年 | 197篇 |
2006年 | 156篇 |
2005年 | 133篇 |
2004年 | 124篇 |
2003年 | 110篇 |
2002年 | 88篇 |
2001年 | 71篇 |
2000年 | 63篇 |
1999年 | 60篇 |
1998年 | 33篇 |
1997年 | 42篇 |
1996年 | 23篇 |
1995年 | 31篇 |
1994年 | 21篇 |
1993年 | 19篇 |
1992年 | 19篇 |
1991年 | 10篇 |
1990年 | 19篇 |
1989年 | 11篇 |
1988年 | 16篇 |
1987年 | 8篇 |
1986年 | 8篇 |
1985年 | 7篇 |
1984年 | 5篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1979年 | 1篇 |
1974年 | 1篇 |
1969年 | 1篇 |
1949年 | 1篇 |
1948年 | 1篇 |
排序方式: 共有4420条查询结果,搜索用时 15 毫秒
11.
12.
13.
Background
The prevalence of metabolic syndrome has been rising worldwide, including in China, but knowledge on specific genetic determinants of metabolic syndrome is very limited. A number of studies have reported that polymorphisms in the ADIPOQ gene are associated with metabolic syndrome in Chinese Han populations. However, data is still conflicting. The objective of this study was to examine the associations of the adiponectin genetic variants with metabolic syndrome by a case-control study and meta-analyses in Chinese.Methods
We first investigated the association of ADIPOQ rs2241766 (+45T>G in exon 2), rs266729 (−11377C>G in promoter) and rs1501299 (+276G>T in intron 2) polymorphisms with metabolic syndrome in a Hubei Han Chinese population with 322 metabolic syndrome patients and 161 normal controls recruited from the Yichang, Hubei. Then we comprehensively reviewed the association between ADIPOQ rs2241766/rs266729/rs1501299 and metabolic syndrome in the Chinese populations via a meta-analysis. The strength of association was assessed by odds ratios (ORs) with 95% confidence intervals (CI).Results
The G allele frequency of rs2241766 in metabolic syndrome patients was significantly higher than those of controls group (29.8% vs 23.3%, OR = 1.40, P = 0.033). The logistic regression analysis adjusted by gender and age showed a nominally significant association for rs2241766 GG+GT genotype (P = 0.065, OR = 1.55) and rs1501299 GG genotype in recessive model (OR = 1.54, P = 0.066). However, no association was observed for rs266729 in our sample. We identified thirteen studies for rs2241766 (2,684 metabolic syndrome patients and 2,864 controls), three studies for rs266729, and eleven studies for rs1501299 (2,889 metabolic syndrome patients and 3,304 controls) in Chinese. Meta-analysis indicated significant associations for the rs2241766 G allele (OR = 1.14, 95%CI = 1.05–1.24, P = 0.003), rs266729 GG+GT genotypes (OR = 0.80, 95%CI = 0.68–0.92, P = 0.003) and rs1501299 GG+TG genotypes (OR = 1.42, 95%CI 1.16–1.75, P = 0.001).Conclusions
Our results demonstrated ADIPOQ as a pleiotropic locus for metabolic syndrome and its components in the Han Chinese population. 相似文献14.
Demonstration of pyruvate recycling in primary cultures of neocortical astrocytes but not in neurons
Pyruvate recycling was studied in primary cultures of mouse cerebrocortical astrocytes, GABAergic cerebrocortical interneurons, and co-cultures consisting of both cell types by measuring production of [4-13C]glutamate from [3-13C]glutamate by aid of nuclear magnetic resonance spectroscopy. This change in the position of the label can only occur by entry of [3-13C]glutamate into the tricarboxylic acid (TCA) cycle, conversion of labeled -ketoglutarate to malate or oxaloacetate, malic enzyme-mediated decarboxylation of malate to pyruvate or phosphoenolpyruvate carboxykinase-mediated conversion of oxaloacetate to phosphoenolpyruvate and subsequent hydrolysis of the latter to pyruvate, and introduction of the labeled pyruvate into the TCA cycle, i.e., after exit of the carbon skeleton of pyruvate from the TCA cycle followed by re-entry of the same pyruvate molecules via acetyl CoA. In agreement with earlier observations, pyruvate recycling was demonstrated in astrocytes, indicating the ability of these cells to undertake complete oxidative degradation of glutamate. The recycled [4-13C]glutamate was not further converted to glutamine, showing compartmentation of astrocytic metabolism. Thus, absence of recycling into glutamine in the brain in vivo cannot be taken as indication that pyruvate recycling is absent in astrocytes. No recycling could be demonstrated in the cerebrocortical neurons. This is consistent with a previously demonstrated lack of incorporation of label from glutamate into lactate, and it also indicates that mitochondrial malic enzyme is not operational. Nor was there any indication of pyruvate recycling in the co-cultures. Although this may partly be due to more rapid depletion of glutamate in the co-cultures, this observation at the very least indicates that pyruvate recycling is not up-regulated in the neuronal-astrocytic co-cultures. 相似文献
15.
Haijun Qu Xiaoxiao Hu Xiaoli Shi Chuan Wang Guoping Wang 《Animal cells and systems.》2019,23(3):155-163
N-(2-pyridylmethyl)-2-hydroxiymethyl-1-pyrrolidinyl-4-(3-chloro-4-methoxy-benzylamino)-5-pyrimidine-carboxamide (NHPPC) is a new potential of type 5 phosphodiesterase (PDE5) inhibitors, synthesized from the avanafil analogue for the treatment of erectile dysfunction. The targets of this article were to assess plasma protein binding, liver microsomal metabolic stability, inhibition and induction on cytochrome P450 isozymes and the pharmacokinetics of NHPPC. Equilibrium dialysis technique was applied to determine Plasma protein binding (PPB) and NHPPC was evaluated in male Sprague–Dawley rats and Beagle dogs in vivo pharmacokinetic. The NHPPC was highly bound to plasma proteins in rats, dogs and human tested and the mean values for PPB rate were 96.2%, 99.6% and 99.4%, respectively. After in vitro liver microsomes incubated for 60?min, the percent remaining of NHPPC was 42.8%, 0.8% and 42.0% in rats, dogs and human, respectively. In vitro intrinsic clearance was found to be 0.0233, 0.1204 and 0.0214 mL/min/mg protein in rat, dog and human liver microsomes of NHPPC, respectively. NHPPC showed no significant inhibitory effects on major CYP450 enzymes, and had no significant induction potential on CYP1A2 and CYP3A4. Following oral administration in rats and dogs, tmax was 6 and 0.5?h, respectively. The clearance for NHPPC was 1.19 and 1.46?L/h/kg in rats and dogs, respectively. And absolute bioavailability in rat and dog were approximately 34.5% and 53.1%, respectively. These results showed that NHPPC has a good development prospect. 相似文献
16.
17.
Mitochondrial calcium plays a crucial role in mitochondrial metabolism, cell calcium handling, and cell death. However, some mechanisms concerning mitochondrial calcium regulation are still unknown, especially how mitochondrial calcium couples with cytosolic calcium. In this work, we constructed a novel mitochondrial calcium fluorescent indicator (mito-GCaMP2) by genetic manipulation. Mito-GCaMP2 was imported into mitochondria with high efficiency and the fluorescent signals co-localized with that of tetramethyl rhodamine methyl ester, a mitochondrial membrane potential indicator. The mitochondrial inhibitors specifically decreased the signals of mito-GCaMP2. The apparent K(d) of mito-GCaMP2 was 195.0 nmol/L at pH 8.0 in adult rat cardiomyocytes. Furthermore, we observed that mito-GCaMP2 preferred the alkaline pH surrounding of mitochondria. In HeLa cells, we found that mitochondrial calcium ([Ca(2+)](mito)) responded to the changes of cytosolic calcium ([Ca(2+)](cyto)) induced by histamine or thapasigargin. Moreover, external Ca(2+) (100 μmol/L) directly induced an increase of [Ca(2+)](mito) in permeabilized HeLa cells. However, in rat cardiomyocytes [Ca(2+)](mito) did not respond to cytosolic calcium transients stimulated by electric pacing or caffeine. In permeabilized cardiomyocytes, 600 nmol/L free Ca(2+) repeatedly increased the fluorescent signals of mito-GCaMP2, which excluded the possibility that mito-GCaMP2 lost its function in cardiomyocytes mitochondria. These results showed that the response of mitochondrial calcium is diverse in different cell lineages and suggested that mitochondria in cardiomyocytes may have a special defense mechanism to control calcium flux. 相似文献
18.
19.
Xiaolu Qu Hua Zhang Yurong Xie Juan Wang Naizhi Chen Shanjin Huang 《The Plant cell》2013,25(5):1803-1817
Apical actin filaments are crucial for pollen tube tip growth. However, the specific dynamic changes and regulatory mechanisms associated with actin filaments in the apical region remain largely unknown. Here, we have investigated the quantitative dynamic parameters that underlie actin filament growth and disappearance in the apical regions of pollen tubes and identified villin as the major player that drives rapid turnover of actin filaments in this region. Downregulation of Arabidopsis thaliana VILLIN2 (VLN2) and VLN5 led to accumulation of actin filaments at the pollen tube apex. Careful analysis of single filament dynamics showed that the severing frequency significantly decreased, and the lifetime significantly increased in vln2 vln5 pollen tubes. These results indicate that villin-mediated severing is critical for turnover and departure of actin filaments originating in the apical region. Consequently, the construction of actin collars was affected in vln2 vln5 pollen tubes. In addition to the decrease in severing frequency, actin filaments also became wavy and buckled in the apical cytoplasm of vln2 vln5 pollen tubes. These results suggest that villin confers rigidity upon actin filaments. Furthermore, an observed decrease in skewness of actin filaments in the subapical region of vln2 vln5 pollen tubes suggests that villin-mediated bundling activity may also play a role in the construction of actin collars. Thus, our data suggest that villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. 相似文献
20.