首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   23篇
  2022年   2篇
  2021年   4篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   7篇
  2014年   4篇
  2013年   15篇
  2012年   8篇
  2011年   11篇
  2010年   12篇
  2009年   12篇
  2008年   14篇
  2007年   11篇
  2006年   12篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   13篇
  2001年   5篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   6篇
  1986年   8篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1973年   2篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有238条查询结果,搜索用时 15 毫秒
41.
The development of potent and selective adenosine receptor ligands as potential drugs is an active area of research. Xanthines are one of the most important classes of adenosine receptor antagonists and have been widely developed in terms of affinity and selectivity for adenosine receptors. We recently developed new original pathways for the synthesis of xanthine analogues starting from 5-substituted-2-amino-2-oxazoline 5 as a synthon. These procedures allowed us to selectively introduce a large, functionalized and beta-adrenergic 2-hydroxy-3-phenoxypropyl pharmacophore at the 1- and 3-position of the xanthine moiety which allowed further structural modifications. In this study, we present a new synthetic access to racemic xanthine derivatives 1-4 from 5, and their evaluation as adenosine A1, A2A and A3 receptor ligands in radioligand binding studies. The 2-hydroxy-3-phenoxypropyl moiety was well tolerated in the 3-position of the xanthine core, while its introduction in the 1-position of the xanthine moiety led to a large decrease in adenosine receptor affinity. 1,7-Dimethyl-3-[1-(2-chloro-3-phenoxypropyl)]-8-(3,4,5-trimethoxystyryl)xanthine (2n) was the most potent and selective A2A antagonist of the present series (Ki=44 nM, >200-fold selective vs A1). 1-Propyl-3-[1-(2-hydroxy-3-phenoxypropyl)]-8-noradamantylxanthine (3f) was identified as a potent (KiA1=21 nM) and highly selective (>350-fold vs A2A and A3 receptor) adenosine A1 receptor antagonist.  相似文献   
42.
Rotavirus (RV) is the main etiological agent of severe gastroenteritis in infants, and vaccination seems the most effective way to control the disease. Recombinant rotavirus-like particles composed of the viral protein 6 (VP6) and VP2 (2/6-VLPs) have been reported to induce protective immunity in mice when administered by the intranasal (i.n.) route. In this study, we show that administration of 2/6-VLPs by the intrarectal (i.r.) route together with either cholera toxin (CT) or a CpG-containing oligodeoxynucleotide as the adjuvant protects adult mice against RV infection. Moreover, when CT is used, RV shedding in animals immunized by the i.r. route is even reduced in comparison with that in animals immunized by the i.n. route. Humoral and cellular immune responses induced by these immunization protocols were analyzed. We found that although i.r. immunization with 2/6-VLPs induces lower RV-specific immunoglobulin G (IgG) and IgA levels in serum, intestinal anti-RV IgA production is higher in mice immunized by the i.r. route. Cellular immune response has been evaluated by measuring cytokine production by spleen and Peyer's patch cells (PPs) after ex vivo restimulation with RV. Mice immunized by the i.n. and i.r. routes display higher gamma interferon production in spleen and PPs, respectively. In conclusion, we demonstrate that i.r. immunization with 2/6-VLPs protects against RV infection in mice and is more efficient than i.n. immunization in inducing an anti-RV immune response in intestinal mucosa.  相似文献   
43.
Nader M  Journet L  Meksem A  Guillon L  Schalk IJ 《Biochemistry》2011,50(13):2530-2540
To get access to iron, Pseudomonas aeruginosa produces the siderophore pyoverdine (PVD), composed of a fluorescent chromophore linked to an octapeptide, and its corresponding outer membrane transporter FpvA. This transporter is composed of three domains: a β-barrel inserted into the membrane, a plug that closes the channel formed by the barrel, and a signaling domain in the periplasm. The plug and the signaling domain are separated by a sequence of five residues called the TonB box, which is necessary for the interaction of FpvA with the inner membrane TonB protein. Genetic deletion of the plug domain resulted in the presence of a β-barrel in the outer membrane unable to bind and transport PVD-Fe. Expression of the soluble plug domain with the TonB box inhibited PVD-(55)Fe uptake most likely through interaction with TonB in the periplasm. A reconstituted FpvA in the bacterial outer membrane was obtained by the coexpression of separately encoded plug and β-barrel domains, each endowed with a signal sequence and a signaling domain. This resulted in polypeptide complementation after secretion across the cytoplasmic membrane. The reconstituted FpvA bound PVD-Fe with the same affinity as wild-type FpvA, indicating that the resulting transporter is correctly folded and reconstituted in the outer membrane. PVD-Fe uptake was TonB-dependent but 75% less efficient compared to wild-type FpvA. These data are consistent with a gated mechanism in which no open channel with a complete removal of the plug domain for PVD-Fe diffusion is formed in FpvA at any point during the uptake cycle.  相似文献   
44.
In addition to the starchy endosperm, a specialized tissue accumulating storage material, the endosperm of wheat grain, comprises the aleurone layer and the transfer cells next to the crease. The transfer cells, located at the ventral region of the grain, are involved in nutrient transfer from the maternal tissues to the developing endosperm. Immunolabeling techniques, Raman spectroscopy, and synchrotron infrared micro-spectroscopy were used to study the chemistry of the transfer cell walls during wheat grain development. The kinetic depositions of the main cell wall polysaccharides of wheat grain endosperm, arabinoxylan, and (1–3)(1–4)-β-glucan in transfer cell walls were different from kinetics previously observed in the aleurone cell walls. While (1–3)(1–4)-β-glucan appeared first in the aleurone cell walls at 90°D, arabinoxylan predominated in the transfer cell walls from 90 to 445°D. Both aleurone and transfer cell walls were enriched in (1–3)(1–4)-β-glucan at the mature stage of wheat grain development. Arabinoxylan was more substituted in the transfer cell walls than in the aleurone walls. However, arabinoxylan was more feruloylated in the aleurone than in the transfer cell walls, whatever the stage of grain development. In the transfer cells, the ferulic acid was less abundant in the outer periclinal walls while para-coumarate was absent. Possible implications of such differences are discussed.  相似文献   
45.
Sex-biased dispersal occurs in all seed plants and many animal species. Theoretical models have shown that sex-biased dispersal can lead to evolutionarily stable biased sex ratios. Here, we use a spatially explicit chessboard model to simulate the evolution of sex ratio in response to sex-biased dispersal range and sex-biased dispersal rate. Two life cycles are represented in the model: one in which both sexes disperse before mating (DDM), the other in which males disperse before mating and mated females or zygotes disperse after mating (DMD). Model parameters include factors like dispersal rate, dispersal range, number of individuals per patch, and habitat heterogeneity.When dispersal range is sex biased, we find that, in a homogeneous environment, the sex ratio is generally biased towards the sex that disperses more widely (sex ratio range: 0.47–0.52). In a heterogeneous environment, the sex ratio is generally biased towards the more dispersive sex in good habitats, and towards the less dispersive sex in poor habitats (sex ratio range: 0–1). This is opposite to the effect of sex-biased dispersal rate, which favours the production of the more dispersive sex in poor habitats and the less dispersive sex in good habitats (sex ratio range: 0–1). To allow for a comparison with theoretical predictions, data concerning sex-biased dispersal and habitat-dependent sex ratios should thus incorporate information about the spatial scale of both dispersal and environmental heterogeneity.  相似文献   
46.

Background

The liver is an important organ for its ability to transform xenobiotics, making the liver tissue a prime target for toxic substances. The carotenoid bixin present in annatto is an antioxidant that can protect cells and tissues against the deleterious effects of free radicals. In this study, we evaluated the protective effect of bixin on liver damage induced by carbon tetrachloride (CCl4) in rats.

Results

The animals were divided into four groups with six rats in each group. CCl4 (0.125 mL kg-1 body wt.) was injected intraperitoneally, and bixin (5.0 mg kg-1 body wt.) was given by gavage 7 days before the CCl4 injection. Bixin prevented the liver damage caused by CCl4, as noted by the significant decrease in serum aminotransferases release. Bixin protected the liver against the oxidizing effects of CCl4 by preventing a decrease in glutathione reductase activity and the levels of reduced glutathione and NADPH. The peroxidation of membrane lipids and histopathological damage of the liver was significantly prevented by bixin treatment.

Conclusion

Therefore, we can conclude that the protective effect of bixin against hepatotoxicity induced by CCl4 is related to the antioxidant activity of the compound.  相似文献   
47.
Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force.  相似文献   
48.
The multidomain non-structural protein 3 (Nsp3) is the largest protein encoded by coronavirus (CoV) genomes and several regions of this protein are essential for viral replication. Of note, SARS-CoV Nsp3 contains a SARS-Unique Domain (SUD), which can bind Guanine-rich non-canonical nucleic acid structures called G-quadruplexes (G4) and is essential for SARS-CoV replication. We show herein that the SARS-CoV-2 Nsp3 protein also contains a SUD domain that interacts with G4s. Indeed, interactions between SUD proteins and both DNA and RNA G4s were evidenced by G4 pull-down, Surface Plasmon Resonance and Homogenous Time Resolved Fluorescence. These interactions can be disrupted by mutations that prevent oligonucleotides from folding into G4 structures and, interestingly, by molecules known as specific ligands of these G4s. Structural models for these interactions are proposed and reveal significant differences with the crystallographic and modeled 3D structures of the SARS-CoV SUD-NM/G4 interaction. Altogether, our results pave the way for further studies on the role of SUD/G4 interactions during SARS-CoV-2 replication and the use of inhibitors of these interactions as potential antiviral compounds.  相似文献   
49.
The muscarinic agonist, carbachol (CCh), was shown to stimulate the production of inositol phosphates (IP) in isolated cells from rabbit fundic mucosa. This stimulatory effect was time- and dose-dependent: EC50 values for IP1, IP2 and IP3 accumulation were not statistically different. The mean value was 30 +/- 8 microM (n = 6). The corresponding maximal stimulation (% of basal value) observed after 20 min incubation in the presence of 100 microM CCh was 160 +/- 15%. CCh-induced IP accumulation was abolished by atropine (Ki = 0.32 +/- 0.18 nM (n = 3)). The CCh concentrations leading to half-maximal inhibition of N-[3H]methylscopolamine binding and half-maximal IP accumulation were similar. The half-maximal value for CCh-induced aminopyrine accumulation was 8-times lower. These results indicate that IP3-mediated mobilization of intracellular Ca2+ might be involved in CCh-induced acid secretion by parietal cells.  相似文献   
50.
In primary cultures of anterior pituitary cells, dopamine inhibited basal and thyrotropin-releasing hormone (TRH)-stimulated inositol monophosphate, bisphosphate, and trisphosphate production. This inhibition by dopamine can be resolved into two distinct components. One of the components was rapid and already present after 10 s. The other was slower, starting after 1 min, and was mimicked by nimodipine, a dihydropyridine calcium channel antagonist. The effects of dopamine and nimodipine were not additive on both basal and TRH-stimulated inositol phosphate production. Furthermore, the dopamine inhibition in the presence of TRH was much higher than the inhibition induced by nimodipine. It is thus likely that calcium entry through voltage-dependent calcium channels triggers a positive feedback on TRH stimulation of phospholipase C. However, depolarizing concentrations of K+ or BAY-K-8644, a voltage-dependent calcium channel agonist, had no effect on inositol monophosphate and bisphosphate accumulation. Ionomycin, even at a very high concentration (10 microM), had only a slight and transient effect on inositol phosphate formation. In addition, these agents did not affect the TRH dose-dependent stimulation of inositol phosphate production. These results suggest that the intracellular calcium concentrations that we measured under basal and TRH-stimulated conditions are sufficient to allow the maximal activity of phospholipase C which can be obtained under these two experimental conditions. In contrast, any decrease in the intracellular calcium concentration by a dihydropyridine antagonist, suppression of extracellular calcium, or inactivation of a voltage-dependent calcium channel by long term depolarization with K+ decreased the phospholipase C activities measured under basal and TRH-stimulated conditions. From these data it can be concluded that dopamine inhibits inositol phosphate production by two distinct mechanisms. The slow dopamine-induced inhibition of TRH-stimulated inositol phosphate production which is mimicked by nimodipine is likely because of an inhibition of a voltage-dependent calcium channel. This is substantiated further by the fact that ionomycin (10 microM) was able to reverse the nimodipine inhibitions as well as this slow component of dopamine inhibition. The nature of the rapid inhibition of TRH-stimulated inositol phosphate production induced by dopamine, but not by nimodipine, remains to be determined. It is suppressed in the absence of extracellular Ca2+. This may suggest that this inhibition is related to blockade of non-dihydropyridine-sensitive Ca2+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号