首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   23篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   8篇
  2016年   7篇
  2015年   11篇
  2014年   6篇
  2013年   13篇
  2012年   15篇
  2011年   19篇
  2010年   15篇
  2009年   13篇
  2008年   12篇
  2007年   20篇
  2006年   11篇
  2005年   8篇
  2004年   16篇
  2003年   15篇
  2002年   10篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   6篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
31.
CPT1c is a carnitine palmitoyltransferase 1 (CPT1) isoform that is expressed only in the brain. The enzyme has recently been localized in neuron mitochondria. Although it has high sequence identity with the other two CPT1 isoenzymes (a and b), no CPT activity has been detected to date. Our results indicate that CPT1c is expressed in neurons but not in astrocytes of mouse brain sections. Overexpression of CPT1c fused to the green fluorescent protein in cultured cells demonstrates that CPT1c is localized in the endoplasmic reticulum rather than mitochondria and that the N-terminal region of CPT1c is responsible for endoplasmic reticulum protein localization. Western blot experiments with cell fractions from adult mouse brain corroborate these results. In addition, overexpression studies demonstrate that CPT1c does not participate in mitochondrial fatty acid oxidation, as would be expected from its subcellular localization. To identify the substrate of CPT1c enzyme, rat cDNA was overexpressed in neuronal PC-12 cells, and the levels of acylcarnitines were measured by high-performance liquid chromatography-mass spectrometry. Palmitoylcarnitine was the only acylcarnitine to increase in transfected cells, which indicates that palmitoyl-CoA is the enzyme substrate and that CPT1c has CPT1 activity. Microsomal fractions of PC-12 and HEK293T cells overexpressing CPT1c protein showed a significant increase in CPT1 activity of 0.57 and 0.13 nmol.mg(-1).min(-1), respectively, which is approximately 50% higher than endogenous CPT1 activity. Kinetic studies demonstrate that CPT1c has similar affinity to CPT1a for both substrates but 20-300 times lower catalytic efficiency.  相似文献   
32.
33.
34.
35.
36.
Recombinant human growth hormone (rhGH) is used for the treatment of several pathologies, most of them related to growth. Although different expression systems can be used for its production, the milk from transgenic cows is one of the most interesting due to the high rhGH level achieved (5 g/L). We have designed and synthesized short peptides (9 or 10 amino acid long) using Fmoc chemistry and studied their ability to purify rhGH from milk once immobilized on an agarose support. Using spiked milk with the hormone as a sample, rhGH was purified with 88% yield and 92% purity in a single step with a fold purification of 4.5. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:999–1005, 2018  相似文献   
37.
The influence of the injection of dexamethasone on ketogenesis in 12 day old suckling rats was studied in intestine and liver by determining mRNA levels and enzyme activity of the two genes responsible for regulation of ketogenesis: carnitine palmitoyl transferase I (CPT 1) and mitochondrial HMG-CoA synthase. Dexamethasone produced a 2 fold increase in mRNA and activity of CPT I in intestine, but led to a decrease in mitt HMG-CoA synthase. In liver the mRNA levels and activity of both CPT I and mitt HMG-CoA synthase decreased. Comparison of these values with the ketogenic rate of both tissues following dexamethasone treatment suggests that mitt HMG-CoA synthase could be the main gene responsible for the regulation of ketogenesis in suckling rats. The changes produced in serum ketone bodies by dexamethasone, with a profile that is more similar to the ketogenic rate in the liver than that in the intestine, indicate that liver contributes more to ketone body synthesis in suckling rats. Two day treatment with dexamethasone produced no change in mRNA or activity levels for CPT I in liver or intestine. While mRNA levels for mitt HMG-CoA synthase changed little, the enzyme activity is decreased in both tissues.  相似文献   
38.
During development, the secreted molecule Sonic Hedgehog (Shh) is required for lineage specification and proliferation of oligodendrocyte progenitors (OLPs), which are the glia cells responsible for the myelination of axons in the central nervous system (CNS). Shh signaling has been implicated in controlling both the generation of oligodendrocytes (OLGs) during embryonic development and their production in adulthood. Although, some evidence points to a role of Shh signaling in OLG development, its involvement in OLG differentiation remains to be fully determined. The objective of this study was to assess whether Shh signaling is involved in OLG differentiation after neural stem cell commitment to the OLG lineage. To address these questions, we manipulated Shh signaling using cyclopamine, a potent inhibitor of Shh signaling activator Smoothened (Smo), alone or combined with the agonist SAG in OLG primary cultures and assessed expression of myelin-specific markers. We found that inactivation of Shh signaling caused a dose-dependent decrease in myelin basic protein (MBP) and myelin associated glycoprotein (MAG) in differentiating OLGs. Co-treatment of the cells with SAG reversed the inhibitory effect of cyclopamine on both myelin-specific protein levels and morphological changes associated with it. Further experiments are required to elucidate the molecular mechanism by which Shh signaling regulates OLG differentiation.  相似文献   
39.
Contribution of three regions (phosphate-binding, 50’s and 90’s loops) of Anabaena apoflavodoxin to FMN binding and reduction potential was studied. Thr12 and Glu16 did not influence FMN redox properties, but Thr12 played a role in FMN binding. Replacement of Trp57 with Glu, Lys or Arg moderately shifted Eox/sq and Esq/hq and altered the energetic of the FMN redox states binding profile. Our data indicate that the side chain of position 57 does not modulate Eox/sq by aromatic stacking or solvent exclusion, but rather by influencing the relative strength of the H-bond between the N(5) of the flavin and the Asn58-Ile59 bond. A correlation was observed between the isoalloxazine increase in solvent accessibility and less negative Esq/hq. Moreover, Esq/hq became less negative as positively charged residues were added near to the isoalloxazine. Ile59 and Ile92 were simultaneously mutated to Ala or Glu. These mutations impaired FMN binding, while shifting Esq/hq to less negative values and Eox/sq to more negative. These effects are discussed on the bases of the X-ray structures of some of the Fld mutants, suggesting that in Anabaena Fld the structural control of both electron transfer steps is much more subtle than in other Flds.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号