首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   23篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   8篇
  2016年   7篇
  2015年   11篇
  2014年   6篇
  2013年   13篇
  2012年   15篇
  2011年   19篇
  2010年   15篇
  2009年   13篇
  2008年   12篇
  2007年   20篇
  2006年   11篇
  2005年   8篇
  2004年   16篇
  2003年   15篇
  2002年   10篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   6篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有242条查询结果,搜索用时 46 毫秒
21.
EGFR mutations correlate with improved clinical outcome whereas KRAS mutations are associated with lack of response to tyrosine kinase inhibitors in patients with non-small cell lung cancer (NSCLC). Endobronchial ultrasound (EBUS)-transbronchial needle aspiration (TBNA) is being increasingly used in the management of NSCLC. Co-amplification at lower denaturation temperature (COLD)-polymerase chain reaction (PCR) (COLD-PCR) is a sensitive assay for the detection of genetic mutations in solid tumours. This study assessed the feasibility of using COLD-PCR to screen for EGFR and KRAS mutations in cytology samples obtained by EBUS-TBNA in routine clinical practice. Samples obtained from NSCLC patients undergoing EBUS-TBNA were evaluated according to our standard clinical protocols. DNA extracted from these samples was subjected to COLD-PCR to amplify exons 18-21 of EGFR and exons two and three of KRAS followed by direct sequencing. Mutation analysis was performed in 131 of 132 (99.3%) NSCLC patients (70F/62M) with confirmed lymph node metastases (94/132 (71.2%) adenocarcinoma; 17/132 (12.8%) squamous cell; 2/132 (0.15%) large cell neuroendocrine; 1/132 (0.07%) large cell carcinoma; 18/132 (13.6%) NSCL-not otherwise specified (NOS)). Molecular analysis of all EGFR and KRAS target sequences was achieved in 126 of 132 (95.5%) and 130 of 132 (98.4%) of cases respectively. EGFR mutations were identified in 13 (10.5%) of fully evaluated cases (11 in adenocarcinoma and two in NSCLC-NOS) including two novel mutations. KRAS mutations were identified in 23 (17.5%) of fully analysed patient samples (18 adenocarcinoma and five NSCLC-NOS). We conclude that EBUS-TBNA of lymph nodes infiltrated by NSCLC can provide sufficient tumour material for EGFR and KRAS mutation analysis in most patients, and that COLD-PCR and sequencing is a robust screening assay for EGFR and KRAS mutation analysis in this clinical context.  相似文献   
22.
The tapeworms of the genus Taenia that infect human beings are T. solium, T. saginata and T. saginata asiatica. Taenia solium and T. saginata exhibit unequivocal features that characterize them; in contrast, only recent DNA studies, morphological characteristics, and epidemiological and sanitary aspects indicate that T. saginata asiatica is a subspecies of T. saginata. These 3 tapeworms occur in humans in their adult stage, and the intermediate hosts are pigs for T. solium and T. saginata asiatica and cows for T. saginata. Their identification is crucial considering the migratory increase from Asia to the Western Hemisphere and the fact that these tapeworms coexist in the same environment in Asia; furthermore, it is estimated that movement in both directions across the United States-Mexico border exceeds 200 million persons per yr, and thus, opportunities for acquiring and transporting T. solium infections are multiplied. It is not easy to distinguish among these tapeworms; therefore, a comparative diagram of the 3 parasites is shown in this article, which will facilitate their identification. All morphological features, some of which allow for identification, are clear and can be easily distinguished among the 3 tapeworms.  相似文献   
23.
Enteroviruses (Picornaviridae family) are a common cause of human illness worldwide and are associated with diverse clinical syndromes, including asymptomatic infection, respiratory illness, gastroenteritis, and meningitis. In this study, we report the identification and complete genome sequence of a novel enterovirus isolated from a case of acute respiratory illness in a Nicaraguan child. Unbiased deep sequencing of nucleic acids from a nose and throat swab sample enabled rapid recovery of the full-genome sequence. Phylogenetic analysis revealed that human enterovirus 109 (EV109) is most closely related to serotypes of human enterovirus species C (HEV-C) in all genomic regions except the 5′ untranslated region (5′ UTR). Bootstrap analysis indicates that the 5′ UTR of EV109 is likely the product of an interspecies recombination event between ancestral members of the HEV-A and HEV-C groups. Overall, the EV109 coding region shares 67 to 72% nucleotide sequence identity with its nearest relatives. EV109 isolates were detected in 5/310 (1.6%) of nose and throat swab samples collected from children in a pediatric cohort study of influenza-like illness in Managua, Nicaragua, between June 2007 and June 2008. Further experimentation is required to more fully characterize the pathogenic role, disease associations, and global distribution of EV109.The genus Enterovirus (EV) in the family Picornaviridae is a group of related viruses that are associated with a spectrum of disease, ranging from subclinical infections to acute respiratory and gastrointestinal illness to more severe manifestations, such as aseptic meningitis, encephalitis, and acute flaccid paralysis (16, 32). Enteroviruses are small, nonenveloped viruses that share a genomic organization. The RNA genome is a ∼7.5 kb single-stranded, positive-sense, polyadenylated molecule, with a single, long open reading frame flanked by 5′ and 3′ untranslated regions (UTRs). The 5′ UTR is ∼700 nucleotides in length and contains highly structured secondary elements with internal ribosomal entry site (IRES) function. The ∼2,200-amino-acid (aa) polyprotein is cotranslationally processed by viral proteases to yield structural (VP4, VP2, VP3, and VP1) and nonstructural (2A, 2B, 2C, 3A, 3B, 3C, and 3D) proteins (32). Current enterovirus classification is based on the high sequence divergence within the VP1 capsid region, which has been shown to correspond with serotype neutralization (27, 28). Human enterovirus (HEV) types are currently classified into four species, human enterovirus A (HEV-A), HEV-B, HEV-C (including poliovirus), and HEV-D, based on the four phylogenetic clusters observed in comparisons of the coding region sequences. An enterovirus is considered a new type within a species if it possesses <75% nucleotide identity and <85% amino acid identity with known members across the VP1 sequence (27, 30). Molecular identification methods play a crucial role in rapid, sensitive enterovirus diagnostics and have led to the recent discovery of several novel enteroviruses (29, 31, 40, 42, 44). Most approaches target a limited number of conserved regions in the 5′ UTR and VP4-VP2 junction or seek to ascertain serotype information by probing antigenic regions, such as VP1 (5).Picornavirus RNA-dependent RNA polymerases are highly error prone and lack proofreading ability, resulting in a misincorporation frequency of 1 per 103 to 104 nucleotides (48). The relative infidelity of these polymerases is believed to enable rapid adaptability under selective pressure. Large-impact evolutionary events, such as recombination within and between enterovirus serotypes, also contribute to their evolution and genetic diversity (3, 8, 26, 39) and may lead to changes in disease associations with human enterovirus infections. Human enteroviruses are classified into four species based on coding region sequence phylogeny, and intraspecies recombination events between enteroviruses that are closely related in the coding region are well documented (26, 38, 39). All known enterovirus 5′ UTR sequences, however, cluster into two groups containing either HEV-A and -B sequences or HEV-C and -D sequences. Recent findings have described enterovirus genomes with a coding region that clusters with one species and a 5′ UTR that clusters with a different species, suggesting possible interspecies recombination events (41, 44). Understanding the recombination-driven evolution of HEV-C viruses is of particular public health concern due to the viruses'' ability to recombine with vaccine poliovirus, resulting in circulating, highly neurovirulent vaccine-derived polioviruses (17, 21, 34). It is unclear whether recombination events between poliovirus and HEV-C viruses allow for the rapid acquisition of traits that increase pathogenic and circulation potential.The enterovirus pathogenicity spectrum is related to tissue tropism and is largely determined by cellular receptor usage. Most picornaviruses use receptors from the immunoglobulin superfamily of proteins, such as intracellular adhesion molecule-1 (ICAM-1) or coxsackievirus-adenovirus receptor (CAR) (36). A distinct subgroup of HEV-C viruses, which includes coxsackievirus (CAV) A1, A19, and A22 and enterovirus 104, has not yet been grown successfully in cell culture, and the receptor molecule for this subgroup is unknown (6). HEV-C viruses are believed to be the ancestral source of poliovirus, which resulted from a capsid mutation that caused a cellular receptor switch from ICAM-1 to CD155 (poliovirus receptor [PVR]) (17).In this study, we report the discovery and characterization of a novel human enterovirus type within species HEV-C, for which we propose the designation human enterovirus 109 (EV109). Sequence analysis reveals considerable nucleotide divergence in the 5′ UTR between EV109 and other HEV-C types, and scanning bootstrap analysis supports the hypothesis that EV109 is the product of an interspecies recombination event with an ancestral member of the HEV-A group. Viral capsid amino acid alignments and homology modeling reveal the predicted three-dimensional arrangement of divergent and conserved residues of EV109 compared with other related enteroviruses. We also report highly similar EV109 isolates within multiple cases of acute pediatric respiratory illness in Managua, Nicaragua.  相似文献   
24.
This study was conducted to evaluate the impact of a food aid program (Plan Más Vida, PMV) on the micronutrient nutritional condition of lactating mothers 1?year after its implementation. The food program provided supplementary diets (wheat- and maize-fortified flour, rice or sugar, and fortified soup) to low-income families from the province of Buenos Aires, Argentina. A prospective, non-experimental study was carried out to evaluate the micronutrient nutritional status of lactating mothers (n?=?178 at baseline and n?=?151 after 1?year). Biochemical tests (hemoglobin, ferritin, zinc, vitamin A, and folic acid), anthropometric assessments (weight and height) and dietary surveys (24-h recall) were performed. We found no significant changes in anthropometric values 1?year after the intervention. The risk for vitamin A (retinol 20?C30???g/dl) and folate deficiency significantly decreased 1?year after PMV implementation (56.3 vs. 29.9 and 50.3 vs. 3.4?%, respectively; p?<?0.001). Anemia was seen in 25.8?% of lactating mothers at baseline, without statistically significant differences 1?year after (p?=?0.439). The nutritional data obtained after assessing the early impact of PMV actions may be useful to provincial health authorities to perform periodic evaluations in the future.  相似文献   
25.
26.
The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a native vegetation soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba), in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity) were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare) did not occur in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C) were higher in the soil cultivated with the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the native vegetation soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable for the long-term conservation and sustainable management of these tropical ecosytems.  相似文献   
27.

Background

Tens of millions of dengue cases and approximately 500,000 life-threatening complications occur annually. New tools are needed to distinguish dengue from other febrile illnesses. In addition, the natural history of pediatric dengue early in illness in a community-based setting has not been well-defined.

Methods

Data from the multi-year, ongoing Pediatric Dengue Cohort Study of approximately 3,800 children aged 2–14 years in Managua, Nicaragua, were used to examine the frequency of clinical signs and symptoms by day of illness and to generate models for the association of signs and symptoms during the early phase of illness and over the entire course of illness with testing dengue-positive. Odds ratios (ORs) and 95% confidence intervals were calculated using generalized estimating equations (GEE) for repeated measures, adjusting for age and gender.

Results

One-fourth of children who tested dengue-positive did not meet the WHO case definition for suspected dengue. The frequency of signs and symptoms varied by day of illness, dengue status, and disease severity. Multivariable GEE models showed increased odds of testing dengue-positive associated with fever, headache, retro-orbital pain, myalgia, arthralgia, rash, petechiae, positive tourniquet test, vomiting, leukopenia, platelets ≤150,000 cells/mL, poor capillary refill, cold extremities and hypotension. Estimated ORs tended to be higher for signs and symptoms over the course of illness compared to the early phase of illness.

Conclusions

Day-by-day analysis of clinical signs and symptoms together with longitudinal statistical analysis showed significant associations with testing dengue-positive and important differences during the early phase of illness compared to the entire course of illness. These findings stress the importance of considering day of illness when developing prediction algorithms for real-time clinical management.  相似文献   
28.
During the last decades, there has been an increasing proportion of patients susceptible to invasive fungal disease (IFD). The epidemiology of IFD varies mainly due to geography, antifungal exposure, and nosocomial reservoirs. We reviewed the Argentinean epidemiology of invasive mold disease (IMD) by analyzing laboratory and clinical data. Invasive mold disease was the second most prevalent IFD following the yeasts, with a prevalence that ranged from 0.98 to 1.31/100,000 population. The majority (60?C85?%) of IMD was caused by hyalohyphomycetes followed by Mucorales (6?C21?%) and phaeohyphomycetes (7?C13?%). The most prevalent genera were Aspergillus (40?C67?% of IMD) followed by Fusarium (10?C14?%). The most prevalent species were A. fumigatus (38?C50?%) followed by A. flavus (27?C43?%). In immunocompromised patients in Argentina the most prevalent agents of IMD are Aspergillus, followed by Fusarium and Mucorales, while the most prevalent Aspergillus species are A. fumigatus followed by A. flavus.  相似文献   
29.
30.
Germline genetics, gender and hormonal-signaling pathways are all well described modifiers of cancer risk and progression. Although an improved understanding of how germline genetic variants interact with other cancer risk factors may allow better prevention and treatment of human cancer, measuring and quantifying these interactions is challenging. In other areas of research, Information Theory has been used to quantitatively describe similar multivariate interactions. We implemented a novel information-theoretic analysis to measure the joint effect of a high frequency germline genetic variant of the p53 tumor suppressor pathway (MDM2 SNP309 T/G) and gender on clinical cancer phenotypes. This analysis quantitatively describes synergistic interactions among gender, the MDM2 SNP309 locus, and the age of onset of tumorigenesis in p53 mutation carriers. These results offer a molecular and genetic basis for the observed sexual dimorphism of cancer risk in p53 mutation carriers and a model is proposed that suggests a novel cancer prevention strategy for p53 mutation carriers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号