首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3019篇
  免费   301篇
  国内免费   1篇
  2023年   29篇
  2022年   47篇
  2021年   119篇
  2020年   66篇
  2019年   79篇
  2018年   93篇
  2017年   84篇
  2016年   130篇
  2015年   172篇
  2014年   201篇
  2013年   244篇
  2012年   326篇
  2011年   298篇
  2010年   142篇
  2009年   133篇
  2008年   177篇
  2007年   173篇
  2006年   163篇
  2005年   122篇
  2004年   104篇
  2003年   100篇
  2002年   96篇
  2001年   26篇
  2000年   21篇
  1999年   20篇
  1998年   15篇
  1997年   15篇
  1996年   9篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   10篇
  1991年   9篇
  1990年   11篇
  1989年   6篇
  1988年   4篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1982年   3篇
  1981年   5篇
  1979年   4篇
  1978年   3篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1967年   2篇
  1956年   2篇
  1942年   2篇
  1937年   2篇
排序方式: 共有3321条查询结果,搜索用时 15 毫秒
991.
992.
Cancer‐associated fibroblasts (CAFs) interact with tumour cells and promote growth and metastasis. Here, we show that CAF activation is reversible: chronic hypoxia deactivates CAFs, resulting in the loss of contractile force, reduced remodelling of the surrounding extracellular matrix and, ultimately, impaired CAF‐mediated cancer cell invasion. Hypoxia inhibits prolyl hydroxylase domain protein 2 (PHD2), leading to hypoxia‐inducible factor (HIF)‐1α stabilisation, reduced expression of αSMA and periostin, and reduced myosin II activity. Loss of PHD2 in CAFs phenocopies the effects of hypoxia, which can be prevented by simultaneous depletion of HIF‐1α. Treatment with the PHD inhibitor DMOG in an orthotopic breast cancer model significantly decreases spontaneous metastases to the lungs and liver, associated with decreased tumour stiffness and fibroblast activation. PHD2 depletion in CAFs co‐injected with tumour cells similarly prevents CAF‐induced metastasis to lungs and liver. Our data argue that reversion of CAFs towards a less active state is possible and could have important clinical implications.  相似文献   
993.
994.
Habitat selection is a multi‐level, hierarchical process that should be a key component in the balance between food acquisition and predation risk avoidance (food–predation trade‐off). However, to date, studies have not fully elucidated how fine‐ and broad‐scale habitat decisions by individual prey can help balance food versus risk. We studied broad‐scale habitat selection by Newfoundland caribou Rangifer tarandus, focusing on trade‐offs between predation risk versus access to forage during the calving and post‐calving period. We improved traditional measures of habitat availability by incorporating fine‐scale movement patterns of caribou into the availability kernel, thus enabling separation of broad and fine scales of selection. Remote sensing and field surveys served to create a spatio‐temporal model of forage availability, whereas GPS telemetry locations from 66 black bears Ursus americanus and 59 coyotes Canis latrans provided models of predation risk. We then used GPS telemetry locations from 114 female caribou to assess food–predation trade‐offs through the prism of our refined model of caribou habitat availability. We noted that migratory movements of caribou were oriented mainly towards habitats with abundant forage and lower risk of bear and (to a lesser extent) coyote encounter. These findings were generally consistent across caribou herds and would not have been evident had we used traditional methods instead of our refined model when estimating habitat availability. We interpret these findings in the context of stereotypical migratory behaviour observed in Newfoundland caribou, which occurs despite the extirpation of wolves Canis lupus nearly a century ago. We submit that caribou are able to balance food acquisition against predation risk using a complex set of factors involving both finer and broader scale selection. Accordingly, our study provides a strong argument for using refined habitat availability estimates when assessing food–predation trade‐offs.  相似文献   
995.
996.
Human coagulation factor X is a central component of the blood coagulation cascade that converts, under its activated form, prothrombin into thrombin. Generation of thrombin is the final step of the clotting cascade that leads to the clot by polymerization of fibrinogen molecules into a fibrin network. Today, research of new by‐passing agents of the coagulation may contribute to an increased interest for human factor X, which may, in consequence, lead to the need of a more exhaustive picture of its structural features. Several post‐translational modifications of human factor X such as γ‐carboxylation/β‐hydroxylation of the N‐terminal light chain and N‐/O‐glycosylation of the activation peptide have been described. But, so far as we know, no comprehensive studies of its post‐translational modifications have been reported. In this article we report an exhaustive structural analysis of human factor X by mass spectrometry using successive protein and peptide mapping. Surprisingly, human factor X was found to be mostly O‐glucosylated on its light chain at Ser106 position, Ser9 of its activation peptide is phosphorylated at about 30% and its C‐terminal heavy chain is fully O‐glycosylated at Thr249 by a mucin‐type O‐glycan (HexNAc‐Hex‐NeuAc). The knowledge of these post‐translational modifications is mandatory for the development of recombinant molecules.  相似文献   
997.
998.
999.
CRISPR-Cas is a form of adaptive sequence-specific immunity in microbes. This system offers unique opportunities for the study of coevolution between bacteria and their viral pathogens, bacteriophages. A full understanding of the coevolutionary dynamics of CRISPR-Cas requires knowing the magnitude of the cost of resisting infection. Here, using the gram-positive bacterium Streptococcus thermophilus and its associated virulent phage 2972, a well-established model system harbouring at least two type II functional CRISPR-Cas systems, we obtained different fitness measures based on growth assays in isolation or in pairwise competition. We measured the fitness cost associated with different components of this adaptive immune system: the cost of Cas protein expression, the constitutive cost of increasing immune memory through additional spacers, and the conditional costs of immunity during phage exposure. We found that Cas protein expression is particularly costly, as Cas-deficient mutants achieved higher competitive abilities than the wild-type strain with functional Cas proteins. Increasing immune memory by acquiring up to four phage-derived spacers was not associated with fitness costs. In addition, the activation of the CRISPR-Cas system during phage exposure induces significant but small fitness costs. Together these results suggest that the costs of the CRISPR-Cas system arise mainly due to the maintenance of the defence system. We discuss the implications of these results for the evolution of CRISPR-Cas-mediated immunity.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号