首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3025篇
  免费   302篇
  国内免费   1篇
  3328篇
  2023年   33篇
  2022年   49篇
  2021年   119篇
  2020年   66篇
  2019年   79篇
  2018年   93篇
  2017年   84篇
  2016年   130篇
  2015年   172篇
  2014年   201篇
  2013年   244篇
  2012年   326篇
  2011年   298篇
  2010年   142篇
  2009年   133篇
  2008年   177篇
  2007年   173篇
  2006年   163篇
  2005年   122篇
  2004年   104篇
  2003年   100篇
  2002年   96篇
  2001年   26篇
  2000年   21篇
  1999年   20篇
  1998年   15篇
  1997年   15篇
  1996年   9篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   10篇
  1991年   9篇
  1990年   11篇
  1989年   6篇
  1988年   4篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1982年   3篇
  1981年   5篇
  1979年   4篇
  1978年   3篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1967年   2篇
  1956年   2篇
  1942年   2篇
  1937年   2篇
排序方式: 共有3328条查询结果,搜索用时 16 毫秒
201.
Testing for genetic effects on mean values of a quantitative trait has been a very successful strategy. However, most studies to date have not explored genetic effects on the variance of quantitative traits as a relevant consequence of genetic variation. In this report, we demonstrate that, under plausible scenarios of genetic interaction, the variance of a quantitative trait is expected to differ among the three possible genotypes of a biallelic SNP. Leveraging this observation with Levene''s test of equality of variance, we propose a novel method to prioritize SNPs for subsequent gene–gene and gene–environment testing. This method has the advantageous characteristic that the interacting covariate need not be known or measured for a SNP to be prioritized. Using simulations, we show that this method has increased power over exhaustive search under certain conditions. We further investigate the utility of variance per genotype by examining data from the Women''s Genome Health Study. Using this dataset, we identify new interactions between the LEPR SNP rs12753193 and body mass index in the prediction of C-reactive protein levels, between the ICAM1 SNP rs1799969 and smoking in the prediction of soluble ICAM-1 levels, and between the PNPLA3 SNP rs738409 and body mass index in the prediction of soluble ICAM-1 levels. These results demonstrate the utility of our approach and provide novel genetic insight into the relationship among obesity, smoking, and inflammation.  相似文献   
202.
203.
With a steadily increasing prevalence, insulin resistance (IR) is a major public health issue. This syndrome is defined as a set of metabolic dysfunctions associated with, or contributing to, a range of serious health problems. These disorders include type 2 diabetes, metabolic syndrome, obesity, and non-alcoholic steatohepatitis (NASH). According to the literature in the field, several cell types like β-cell, myocyte, hepatocyte and/or adipocyte, as well as related complex signaling environment involved in peripheral insulin sensitivity are believed to be central in this pathology. Because of the central role of the liver in the whole-body energy homeostasis, liver insulin sensitivity and its potential relationship with mitochondrial oxidative phosphorylation appear to be crucial. The following short review highlights how liver mitochondria could be implicated in IR and should therefore be considered as a specific therapeutic target in the future.  相似文献   
204.
The trimeric OmpU and OmpT porins form large, triple-barrel hydrophilic channels in the outer membrane of the pathogen Vibrio cholerae. They have distinct pore properties, such as conductance, block by deoxycholic acid, and sensitivity to acidic pH. Their three-dimensional structures are unknown, but they share significant sequence homologies. To gain insight into the molecular basis for the distinct functional properties of these two similar porins, we carried out polymer exclusion experiments using planar lipid bilayer and patch-clamp electrophysiology. By studying the partitioning of polyethylene glycols (PEGs) of different molecular weights into each porin, we determined an effective radius of 0.55 nm and 0.43 nm for OmpU and OmpT respectively, and found an increased OmpU effective radius at acidic pH. PEGs or high buffer ionic strength promotes the appearance of single step closures in OmpU similar to the acidic-pH induced closures we documented previously. In addition, these closing events can be triggered by nonpenetrating PEGs applied asymmetrically. We believe our results support a model whereby acidic pH, high ionic strength, or exposure to PEGs stabilizes a less conductive state that corresponds to the appearance of an additional resistive element on one side of the OmpU protein and common to the three monomers.  相似文献   
205.

Background  

Gene promoters can be in various epigenetic states and undergo interactions with many molecules in a highly transient, probabilistic and combinatorial way, resulting in a complex global dynamics as observed experimentally. However, models of stochastic gene expression commonly consider promoter activity as a two-state on/off system. We consider here a model of single-gene stochastic expression that can represent arbitrary prokaryotic or eukaryotic promoters, based on the combinatorial interplay between molecules and epigenetic factors, including energy-dependent remodeling and enzymatic activities.  相似文献   
206.
207.
Nonsense-mediated mRNA decay (NMD) in mammalian cells depends on phosphorylation of Upf1, an RNA-dependent ATPase and 5'-to-3' helicase. Upf1 phosphorylation is mediated by Smg1, a phosphoinositol 3-kinase-related protein kinase. Here, we describe a human protein, which we call hSmg5/7a, that manifests similarity to Caenorhabditis elegans NMD factors CeSMG5 and CeSMG7, as well as two Drosophila melanogaster proteins that are also similar to the C. elegans NMD factors. Results indicate that hSmg5/7a functions in the dephosphorylation of Upf1. Furthermore, hSmg5/7a copurifies with Upf1, Upf2, Upf3X, Smg1, and the catalytic subunit of protein phosphatase 2A. We also demonstrate that Upf2, another factor involved in NMD, is a phosphoprotein. However, hSmg5/7a plays no role in the dephosphorylation of Upf2. These data indicate that hSmg5/7a targets protein phosphatase 2A to Upf1 but not Upf2. Results of Western blotting reveal that hSmg5/7a is mostly cytoplasmic in HEK293T cells.  相似文献   
208.
Most proteomic labelling technologies intend to improve protein quantification and/or facilitate (de novo) peptide sequencing. We present here a novel stable-isotope labelling method to simultaneously identify and quantify protein components in complex mixtures by specifically derivatizing the N-terminus of proteins with 4-sulphophenyl isothiocyanate (SPITC). Our approach combines protein identification with quantification through differential isotope-coded labelling at the protein N-terminus prior to digestion. The isotope spacing of 6 Da (unlabelled vs. six-fold 13C-labelled tag) between derivatized peptide pairs enables the detection on different MS platforms (MALDI and ESI). Optimisation of the reaction conditions using SPITC was performed on three model proteins. Improved detection of the N-terminally derivatized peptide compared to the native analogue was observed in negative-ion MALDI-MS. Simpler fragmentation patterns compared to native peptides facilitated protein identification. The 13C-labelled SPITC resulted in convenient peptide pair spacing without isotopic overlap and hence facilitated relative quantification by MALDI-TOF/TOF and LC-ESI-MS/MS. The combination of facilitated identification and quantification achieved by differentially isotope-coded N-terminal protein tagging with light/heavy SPITC represents, to our knowledge, a new approach to quantitative proteomics.  相似文献   
209.
210.
Endo-inulinase is a member of glycosidase hydrolase family 32 (GH32) degrading fructans of the inulin type with an endo-cleavage mode and is an important class of industrial enzyme. In the present study, we report the first crystal structure of an endo-inulinase, INU2, from Aspergillus ficuum at 1.5 Å. It was solved by molecular replacement with the structure of exo-inulinase as search model. The 3D structure presents a bimodular arrangement common to other GH32 enzymes: a N-terminal 5-fold β-propeller catalytic domain with four β-sheets and a C-terminal β-sandwich domain organized in two β-sheets with five β-strands. The structural analysis and comparison with other GH32 enzymes reveal the presence of an extra pocket in the INU2 catalytic site, formed by two loops and the conserved motif W-M(I)-N-D(E)-P-N-G. This cavity would explain the endo-activity of the enzyme, the critical role of Trp40 and particularly the cleavage at the third unit of the inulin(-like) substrates. Crystal structure at 2.1 Å of INU2 complexed with fructosyl molecules, experimental digestion data and molecular modelling studies support these hypotheses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号