首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2834篇
  免费   265篇
  国内免费   1篇
  3100篇
  2024年   2篇
  2023年   32篇
  2022年   48篇
  2021年   112篇
  2020年   64篇
  2019年   77篇
  2018年   92篇
  2017年   80篇
  2016年   126篇
  2015年   163篇
  2014年   189篇
  2013年   235篇
  2012年   310篇
  2011年   280篇
  2010年   142篇
  2009年   130篇
  2008年   172篇
  2007年   165篇
  2006年   141篇
  2005年   104篇
  2004年   92篇
  2003年   92篇
  2002年   83篇
  2001年   25篇
  2000年   20篇
  1999年   17篇
  1998年   12篇
  1997年   13篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1982年   3篇
  1981年   5篇
  1979年   3篇
  1975年   3篇
  1974年   2篇
  1972年   3篇
  1971年   2篇
  1967年   2篇
  1965年   1篇
  1956年   2篇
排序方式: 共有3100条查询结果,搜索用时 15 毫秒
31.
Control of stem cell fate to either enter terminal differentiation versus returning to quiescence (self‐renewal) is crucial for tissue repair. Here, we showed that AMP‐activated protein kinase (AMPK), the master metabolic regulator of the cell, controls muscle stem cell (MuSC) self‐renewal. AMPKα1?/? MuSCs displayed a high self‐renewal rate, which impairs muscle regeneration. AMPKα1?/? MuSCs showed a Warburg‐like switch of their metabolism to higher glycolysis. We identified lactate dehydrogenase (LDH) as a new functional target of AMPKα1. LDH, which is a non‐limiting enzyme of glycolysis in differentiated cells, was tightly regulated in stem cells. In functional experiments, LDH overexpression phenocopied AMPKα1?/? phenotype, that is shifted MuSC metabolism toward glycolysis triggering their return to quiescence, while inhibition of LDH activity rescued AMPKα1?/? MuSC self‐renewal. Finally, providing specific nutrients (galactose/glucose) to MuSCs directly controlled their fate through the AMPKα1/LDH pathway, emphasizing the importance of metabolism in stem cell fate.  相似文献   
32.
Molecular hydrogen can be generated renewably by water splitting with an “artificial‐leaf device”, which essentially comprises two electrocatalyst electrodes immersed in water and powered by photovoltaics. Ideally, this device should operate efficiently and be fabricated with cost‐efficient means using earth‐abundant materials. Here, a lightweight electrocatalyst electrode, comprising large surface‐area NiCo2O4 nanorods that are firmly anchored onto a carbon–paper current collector via a dense network of nitrogen‐doped carbon nanotubes is presented. This electrocatalyst electrode is bifunctional in that it can efficiently operate as both anode and cathode in the same alkaline solution, as quantified by a delivered current density of 10 mA cm?2 at an overpotential of 400 mV for each of the oxygen and hydrogen evolution reactions. By driving two such identical electrodes with a solution‐processed thin‐film perovskite photovoltaic assembly, a wired artificial‐leaf device is obtained that features a Faradaic H2 evolution efficiency of 100%, and a solar‐to‐hydrogen conversion efficiency of 6.2%. A detailed cost analysis is presented, which implies that the material‐payback time of this device is of the order of 100 days.  相似文献   
33.
34.
Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem‐like cells (GSC) being more sensitive to cytotoxic lymphocyte‐mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER–mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER–mitochondria contacts compared to GDCs. Forced ER–mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER–mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma.  相似文献   
35.
36.
37.
Causal mechanisms underlying host specificity in bat ectoparasites   总被引:4,自引:0,他引:4  
In parasites, host specificity may result either from restricted dispersal capacity or from fixed coevolutionary host-parasite adaptations. Knowledge of those proximal mechanisms leading to particular host specificity is fundamental to understand host-parasite interactions and potential coevolution of parasites and hosts. The relative importance of these two mechanisms was quantified through infection and cross-infection experiments using mites and bats as a model. Monospecific pools of parasitic mites (Spinturnix myoti and S. andegavinus) were subjected either to individual bats belonging to their traditional, native bat host species, or to another substitute host species within the same bat genus (Myotis). The two parasite species reacted differently to these treatments. S. myoti exhibited a clear preference for, and had a higher fitness on, its native host, Myotis myotis. In contrast, S. andegavinus showed no host choice, although its fitness was higher on its native host M. daubentoni. The causal mechanisms mediating host specificity can apparently differ within closely related host-parasite systems.  相似文献   
38.
Structural variations (SVs) contribute significantly to the variability of the human genome and extensive genomic rearrangements are a hallmark of cancer. While genomic DNA paired-end-tag (DNA-PET) sequencing is an attractive approach to identify genomic SVs, the current application of PET sequencing with short insert size DNA can be insufficient for the comprehensive mapping of SVs in low complexity and repeat-rich genomic regions. We employed a recently developed procedure to generate PET sequencing data using large DNA inserts of 10–20 kb and compared their characteristics with short insert (1 kb) libraries for their ability to identify SVs. Our results suggest that although short insert libraries bear an advantage in identifying small deletions, they do not provide significantly better breakpoint resolution. In contrast, large inserts are superior to short inserts in providing higher physical genome coverage for the same sequencing cost and achieve greater sensitivity, in practice, for the identification of several classes of SVs, such as copy number neutral and complex events. Furthermore, our results confirm that large insert libraries allow for the identification of SVs within repetitive sequences, which cannot be spanned by short inserts. This provides a key advantage in studying rearrangements in cancer, and we show how it can be used in a fusion-point-guided-concatenation algorithm to study focally amplified regions in cancer.  相似文献   
39.
40.
The lethal mutagenesis hypothesis states that within-host populations of pathogens can be driven to extinction when the load of deleterious mutations is artificially increased with a mutagen, and becomes too high for the population to be maintained. Although chemical mutagens have been shown to lead to important reductions in viral titres for a wide variety of RNA viruses, the theoretical underpinnings of this process are still not clearly established. A few recent models sought to describe lethal mutagenesis but they often relied on restrictive assumptions. We extend this earlier work in two novel directions. First, we derive the dynamics of the genetic load in a multivariate Gaussian fitness landscape akin to classical quantitative genetics models. This fitness landscape yields a continuous distribution of mutation effects on fitness, ranging from deleterious to beneficial (i.e. compensatory) mutations. We also include an additional class of lethal mutations. Second, we couple this evolutionary model with an epidemiological model accounting for the within-host dynamics of the pathogen. We derive the epidemiological and evolutionary equilibrium of the system. At this equilibrium, the density of the pathogen is expected to decrease linearly with the genomic mutation rate U. We also provide a simple expression for the critical mutation rate leading to extinction. Stochastic simulations show that these predictions are accurate for a broad range of parameter values. As they depend on a small set of measurable epidemiological and evolutionary parameters, we used available information on several viruses to make quantitative and testable predictions on critical mutation rates. In the light of this model, we discuss the feasibility of lethal mutagenesis as an efficient therapeutic strategy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号