首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2791篇
  免费   265篇
  国内免费   1篇
  3057篇
  2024年   2篇
  2023年   32篇
  2022年   48篇
  2021年   112篇
  2020年   64篇
  2019年   76篇
  2018年   91篇
  2017年   80篇
  2016年   126篇
  2015年   162篇
  2014年   188篇
  2013年   233篇
  2012年   307篇
  2011年   280篇
  2010年   137篇
  2009年   126篇
  2008年   170篇
  2007年   164篇
  2006年   141篇
  2005年   104篇
  2004年   91篇
  2003年   92篇
  2002年   83篇
  2001年   26篇
  2000年   22篇
  1999年   15篇
  1998年   12篇
  1997年   13篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1971年   2篇
  1967年   2篇
  1965年   1篇
  1956年   2篇
排序方式: 共有3057条查询结果,搜索用时 0 毫秒
41.
The monomeric model of rhodopsin-like G protein-coupled receptors (GPCRs) has progressively yielded the floor to the concept of GPCRs being oligo(di)mers, but the functional correlates of dimerization remain unclear. In this report, dimers of glycoprotein hormone receptors were demonstrated in living cells, with a combination of biophysical (bioluminescence resonance energy transfer and homogenous time resolved fluorescence/fluorescence resonance energy transfer), functional and biochemical approaches. Thyrotropin (TSHr) and lutropin (LH/CGr) receptors form homo- and heterodimers, via interactions involving primarily their heptahelical domains. The large hormone-binding ectodomains were dispensable for dimerization but modulated protomer interaction. Dimerization was not affected by agonist binding. Observed functional complementation indicates that TSHr dimers may function as a single functional unit. Finally, heterologous binding-competition studies, performed with heterodimers between TSHr and LH/CG-TSHr chimeras, demonstrated the unsuspected existence of strong negative cooperativity of hormone binding. Tracer desorption experiments indicated an allosteric behavior in TSHr and, to a lesser extent, in LH/CGr and FSHr homodimers. This study is the first report of homodimerization associated with negative cooperativity in rhodopsin-like GPCRs. As such, it may warrant revisitation of allosterism in the whole GPCR family.  相似文献   
42.
Day respiration of illuminated C(3) leaves is not well understood and particularly, the metabolic origin of the day respiratory CO(2) production is poorly known. This issue was addressed in leaves of French bean (Phaseolus vulgaris) using (12)C/(13)C stable isotope techniques on illuminated leaves fed with (13)C-enriched glucose or pyruvate. The (13)CO(2) production in light was measured using the deviation of the photosynthetic carbon isotope discrimination induced by the decarboxylation of the (13)C-enriched compounds. Using different positional (13)C-enrichments, it is shown that the Krebs cycle is reduced by 95% in the light and that the pyruvate dehydrogenase reaction is much less reduced, by 27% or less. Glucose molecules are scarcely metabolized to liberate CO(2) in the light, simply suggesting that they can rarely enter glycolysis. Nuclear magnetic resonance analysis confirmed this view; when leaves are fed with (13)C-glucose, leaf sucrose and glucose represent nearly 90% of the leaf (13)C content, demonstrating that glucose is mainly directed to sucrose synthesis. Taken together, these data indicate that several metabolic down-regulations (glycolysis, Krebs cycle) accompany the light/dark transition and emphasize the decrease of the Krebs cycle decarboxylations as a metabolic basis of the light-dependent inhibition of mitochondrial respiration.  相似文献   
43.
Candida albicans hyphae grow in a highly polarized fashion from their tips. This polarized growth requires the continuous delivery of secretory vesicles to the tip region. Vesicle delivery depends on Sec2p, the Guanine Exchange Factor (GEF) for the Rab GTPase Sec4p. GTP bound Sec4p is required for the transit of secretory vesicles from the trans‐Golgi to sites of polarized growth. We previously showed that phosphorylation of Sec2p at residue S584 was necessary for Sec2p to support hyphal, but not yeast growth. Here we show that on secretory vesicles SEC2 mRNA is physically associated with Sec2p. Moreover, we show that the phosphorylation of S584 allows SEC2 mRNA to dissociate from Sec2p and we speculate that this is necessary for Sec2p function and/or translation. During hyphal extension, the growing tip may be separated from the nucleus by up to 15 μm. Transport of SEC2 mRNA on secretory vesicles to the tip localizes SEC2 translation to tip allowing a sufficient accumulation of this key protein at the site of polarized growth.  相似文献   
44.
Turnover of actin filaments in cells requires rapid actin disassembly in a cytoplasmic environment that thermodynamically favors assembly because of high concentrations of polymerizable monomers. We here image the disassembly of single actin filaments by cofilin, coronin, and actin-interacting protein 1, a purified protein system that reconstitutes rapid, monomer-insensitive disassembly (Brieher, W.M., H.Y. Kueh, B.A. Ballif, and T.J. Mitchison. 2006. J. Cell Biol. 175:315-324). In this three-component system, filaments disassemble in abrupt bursts that initiate preferentially, but not exclusively, from both filament ends. Bursting disassembly generates unstable reaction intermediates with lowered affinity for CapZ at barbed ends. CapZ and cytochalasin D (CytoD), a barbed-end capping drug, strongly inhibit bursting disassembly. CytoD also inhibits actin disassembly in mammalian cells, whereas latrunculin B, a monomer sequestering drug, does not. We propose that bursts of disassembly arise from cooperative separation of the two filament strands near an end. The differential effects of drugs in cells argue for physiological relevance of this new disassembly pathway and potentially explain discordant results previously found with these drugs.  相似文献   
45.
In this paper, the anti-coagulant rodenticide-human serum albumin (HSA) binding was investigated using a perturbation method to calculate the solute distribution isotherms. It was shown that rodenticide can bound either on the benzodiazepine HSA site with low affinity (site I) or on the warfarin HSA site with high affinity (site II). The thermodynamic parameters of this association were calculated for the two HSA binding sites. For the site II, the rodenticide-HSA association was governed enthalpically whereas for the site I, this one was driven entropically. Moreover, the role of the magnesium (Mg(2+)) and calcium (Ca(2+)) on this association was carried out. It was clearly demonstrated that the rodenticide affinity for the site I was not affected by modifying the bulk solvent surface tension whereas for the site II the association constant increased strongly with the Mg(2+) or the Ca(2+) concentration in the bulk solvent. These results showed that the rodenticide-HSA affinity and thus the rodenticide toxicological effect depends on the Mg(2+) or Ca(2+) concentration.  相似文献   
46.
A new series of FTase inhibitors containing a tricyclic moiety--dioxodibenzothiazepine or dibenzocycloheptane--has been designed and synthesized. Among them, dioxodibenzothiazepine 18d displayed significant inhibitory FTase activity (IC(50)=17.3 nM) and antiproliferative properties.  相似文献   
47.
We have found that a major target for effectors secreted by Pseudomonas syringae is the abscisic acid (ABA) signalling pathway. Microarray data identified a prominent group of effector-induced genes that were associated with ABA biosynthesis and also responses to this plant hormone. Genes upregulated by effector delivery share a 42% overlap with ABA-responsive genes and are also components of networks induced by osmotic stress and drought. Strongly induced were NCED3, encoding a key enzyme of ABA biosynthesis, and the abscisic acid insensitive 1 (ABI1) clade of genes encoding protein phosphatases type 2C (PP2Cs) involved in the regulation of ABA signalling. Modification of PP2C expression resulting in ABA insensitivity or hypersensitivity led to restriction or enhanced multiplication of bacteria, respectively. Levels of ABA increased rapidly during bacterial colonisation. Exogenous ABA application enhanced susceptibility, whereas colonisation was reduced in an ABA biosynthetic mutant. Expression of the bacterial effector AvrPtoB in planta modified host ABA signalling. Our data suggest that a major virulence strategy is effector-mediated manipulation of plant hormone homeostasis, which leads to the suppression of defence responses.  相似文献   
48.
Three parameters (i.e. the water content, soluble sugar content and minimal air temperature) can be used to predict the cold acclimation process of walnut trees. In order to test this assumption, two-year-old walnuts were defoliated at two different dates, i.e. mechanical defoliation in early October (early leaf fall, EF) or natural defoliation in early November (natural leaf fall, NF) and conditioned in either outdoor freeze-deprived or cold-deprived (Tmin > 13 °C) greenhouses over winter. Even if early defoliation date could have affected short day signal perception (SDSP), water balance and carbohydrate metabolism were more altered. EF treatment, by stopping transpiration, significantly increased tree's water content and at warm temperature high root activity stopped normal winter dehydration. Starch content decreased in all treatments, but there was only a significant increase in soluble sugar content when water content had sufficiently decreased. Thus, depending on date of defoliation, cold-deprived trees were or were not able to acclimate to frost (minimal frost hardiness = −21.8 °C vs. −22.1 °C in controls (freeze-deprived) for NF and −13.7 °C vs. −25.3 °C in controls for EF). Different treatments showed the relationship between minimal water content observed during winter and maximal soluble sugars synthesized. Thus, the cold acclimation process appeared dependent on these physiological parameters (water and soluble sugar contents) through the interaction between air temperature and timing of leaf fall.  相似文献   
49.
Structural maintenance of chromosome (SMC) proteins are key organizers of chromosome architecture and are essential for genome integrity. They act by binding to chromatin and connecting distinct parts of chromosomes together. Interestingly, their potential role in providing connections between chromatin and the mitotic spindle has not been explored. Here, we show that yeast SMC proteins bind directly to microtubules and can provide a functional link between microtubules and DNA. We mapped the microtubule-binding region of Smc5 and generated a mutant with impaired microtubule binding activity. This mutant is viable in yeast but exhibited a cold-specific conditional lethality associated with mitotic arrest, aberrant spindle structures, and chromosome segregation defects. In an in vitro reconstitution assay, this Smc5 mutant also showed a compromised ability to protect microtubules from cold-induced depolymerization. Collectively, these findings demonstrate that SMC proteins can bind to and stabilize microtubules and that SMC-microtubule interactions are essential to establish a robust system to maintain genome integrity.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号