首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2791篇
  免费   265篇
  国内免费   1篇
  3057篇
  2024年   2篇
  2023年   32篇
  2022年   48篇
  2021年   112篇
  2020年   64篇
  2019年   76篇
  2018年   91篇
  2017年   80篇
  2016年   126篇
  2015年   162篇
  2014年   188篇
  2013年   233篇
  2012年   307篇
  2011年   280篇
  2010年   137篇
  2009年   126篇
  2008年   170篇
  2007年   164篇
  2006年   141篇
  2005年   104篇
  2004年   91篇
  2003年   92篇
  2002年   83篇
  2001年   26篇
  2000年   22篇
  1999年   15篇
  1998年   12篇
  1997年   13篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1971年   2篇
  1967年   2篇
  1965年   1篇
  1956年   2篇
排序方式: 共有3057条查询结果,搜索用时 0 毫秒
31.

Background

The bloodstream forms of Trypanosoma brucei, the causative agent of sleeping sickness, rely solely on glycolysis for ATP production. It is generally accepted that pyruvate is the major end-product excreted from glucose metabolism by the proliferative long-slender bloodstream forms of the parasite, with virtually no production of succinate and acetate, the main end-products excreted from glycolysis by all the other trypanosomatid adaptative forms, including the procyclic insect form of T. brucei.

Methodology/Principal Findings

A comparative NMR analysis showed that the bloodstream long-slender and procyclic trypanosomes excreted equivalent amounts of acetate and succinate from glucose metabolism. Key enzymes of acetate production from glucose-derived pyruvate and threonine are expressed in the mitochondrion of the long-slender forms, which produces 1.4-times more acetate from glucose than from threonine in the presence of an equal amount of both carbon sources. By using a combination of reverse genetics and NMR analyses, we showed that mitochondrial production of acetate is essential for the long-slender forms, since blocking of acetate biosynthesis from both carbon sources induces cell death. This was confirmed in the absence of threonine by the lethal phenotype of RNAi-mediated depletion of the pyruvate dehydrogenase, which is involved in glucose-derived acetate production. In addition, we showed that de novo fatty acid biosynthesis from acetate is essential for this parasite, as demonstrated by a lethal phenotype and metabolic analyses of RNAi-mediated depletion of acetyl-CoA synthetase, catalyzing the first cytosolic step of this pathway.

Conclusions/Significance

Acetate produced in the mitochondrion from glucose and threonine is synthetically essential for the long-slender mammalian forms of T. brucei to feed the essential fatty acid biosynthesis through the “acetate shuttle” that was recently described in the procyclic insect form of the parasite. Consequently, key enzymatic steps of this pathway, particularly acetyl-CoA synthetase, constitute new attractive drug targets against trypanosomiasis.  相似文献   
32.
Switchgrass (Panicum virgatum L.) is a native perennial warm season (C4) grass that has been identified as a promising species for bioenergy research and production. Consequently, biomass yield and feedstock quality improvements are high priorities for switchgrass research. The objective of this study was to develop a switchgrass genetic linkage map using a full-sib pseudo-testcross mapping population derived from a cross between two heterozygous genotypes selected from the lowland cultivar ‘Alamo’ (AP13) and the upland cultivar ‘Summer’ (VS16). The female parent (AP13) map consists of 515 loci in 18 linkage groups (LGs) and spans 1,733 cM. The male parent (VS16) map arranges 363 loci in 17 LGs and spans 1,508 cM. No obvious cause for the lack of one LG in VS16 could be identified. Comparative analyses between the AP13 and VS16 maps showed that the two major ecotypic classes of switchgrass have highly colinear maps with similar recombination rates, suggesting that chromosomal exchange between the two ecotypes should be able to occur freely. The AP13 and VS16 maps are also highly similar with respect to marker orders and recombination levels to previously published switchgrass maps. The genetic maps will be used to identify quantitative trait loci associated with biomass and quality traits. The AP13 genotype was used for the whole genome-sequencing project and the map will thus also provide a tool for the anchoring of the switchgrass genome assembly.  相似文献   
33.
Syncytins are envelope genes of retroviral origin that have been co-opted for a role in placentation. They promote cell–cell fusion and are involved in the formation of a syncytium layer—the syncytiotrophoblast—at the materno-fetal interface. They were captured independently in eutherian mammals, and knockout mice demonstrated that they are absolutely required for placenta formation and embryo survival. Here we provide evidence that these “necessary” genes acquired “by chance” have a definite lifetime with diverse fates depending on the animal lineage, being both gained and lost in the course of evolution. Analysis of a retroviral envelope gene, the envV gene, present in primate genomes and belonging to the endogenous retrovirus type V (ERV-V) provirus, shows that this captured gene, which entered the primate lineage >45 million years ago, behaves as a syncytin in Old World monkeys, but lost its canonical fusogenic activity in other primate lineages, including humans. In the Old World monkeys, we show—by in situ analyses and ex vivo assays—that envV is both specifically expressed at the level of the placental syncytiotrophoblast and fusogenic, and that it further displays signs of purifying selection based on analysis of non-synonymous to synonymous substitution rates. We further show that purifying selection still operates in the primate lineages where the gene is no longer fusogenic, indicating that degeneracy of this ancestral syncytin is a slow, lineage-dependent, and multi-step process, in which the fusogenic activity would be the first canonical property of this retroviral envelope gene to be lost.  相似文献   
34.
Plant and Soil - Phytoextraction is an in situ technique that can be applied to minerals and mining wastes using hyperaccumulator plants to purposely bio-concentrate high levels of metals or...  相似文献   
35.
BMP-9 is a potent osteogenic factor; however, its effects on osteoclasts, the bone-resorbing cells, remain unknown. To determine the effects of BMP-9 on osteoclast formation, activity and survival, we used human cord blood monocytes as osteoclast precursors that form multinucleated osteoclasts in the presence of RANKL and M-CSF in long-term cultures. BMP-9 did not affect osteoclast formation, but adding BMP-9 at the end of the culture period significantly increased bone resorption compared to untreated cultures, and reduced both the rate of apoptosis and caspase-9 activity. BMP-9 also significantly downregulated the expression of pro-apoptotic Bid, but only after RANKL and M-CSF, which are both osteoclast survival factors, had been eliminated from the culture medium. To investigate the mechanisms involved in the effects of BMP-9, we first showed that osteoclasts expressed some BMP receptors, including BMPR-IA, BMPR-IB, ALK1, and BMPR-II. We also found that BMP-9 was able to induce the phosphorylation of Smad-1/5/8 and ERK 1/2 proteins, but did not induce p38 phosphorylation. Finally, knocking down the BMPR-II receptor abrogated the BMP-9-induced ERK-signaling, as well as the increase in bone resorption. In conclusion, these results show for the first time that BMP-9 directly affects human osteoclasts, enhancing bone resorption and protecting osteoclasts against apoptosis. BMP-9 signaling in human osteoclasts involves the canonical Smad-1/5/8 pathway, and the ERK pathway.  相似文献   
36.
The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in the long-sought molecular bases of alkane formation and polyester synthesis have allowed construction of nearly complete biosynthetic pathways for both waxes and cutin. Concurrently, a complex regulatory network controlling the synthesis of the cuticle is emerging. It has also become clear that the physiological role of the cuticle extends well beyond its primary function as a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes. Here, we review recent progress in the biochemistry and molecular biology of cuticle synthesis and function and highlight some of the major questions that will drive future research in this field.The first plant colonizers of land, approximately 450 million years ago in the mid-Paleozoic era, faced a daunting set of challenges associated with their new terrestrial environment, including desiccation, temperature extremes, gravity, and increased exposure to UV radiation (Waters, 2003; Leliaert et al., 2011). The transition from an exclusively aquatic to a terrestrial life style, therefore, would have necessitated the evolution of a toolbox of morphological and physiological features, some of which are apparent through studies of the fossil record or by examining extant plant lineages. For example, the development of architecturally complex cell walls for biomechanical support and structural protection, which typify modern land plants, can be traced back to divergence and radiation within the Charophycean green algae, their immediate ancestors (Sørensen et al., 2011). However, the most critical adaptive trait for survival during terrestrialization would have been the ability to retain water in increasingly dehydrating habitats. Consequently, the capacity to synthesize, deposit, and maintain a hydrophobic surface layer, or cuticle, over the surfaces of aerial organs was arguably one of the most important innovations in the history of plant evolution. This idea is borne out by both fossil evidence (Edwards, 1993) and the ubiquity of cuticles among all extant embryophytes, from bryophytes (Budke et al., 2012) to angiosperms.Armed with a protective skin, together with a range of adaptive strategies for acquiring and conserving water, as well as for avoiding or tolerating water stress, embryophytes now thrive in a wide range of desiccating environments (Ogburn and Edwards, 2010; Aroca et al., 2012; Delaux et al., 2012; Jones and Dolan, 2012; Obata and Fernie, 2012; Gaff and Oliver, 2013). Accordingly, cuticles from a broad range of species, and in various ecological and agricultural contexts, have been studied from the perspective of their role as the primary barrier to transpirational water loss. However, it is now clear that cuticles play numerous other roles in plant development, physiology, and interactions with the abiotic environment and other organisms. Indeed, in recent years, there have been many instances of unexpected associations between the cuticle and diverse aspects of plant biology. In parallel, the past decade has seen considerable progress in understanding the biosynthesis of the major cuticle components and the complex regulatory networks that control cuticle synthesis and assembly.This review summarizes recent progress in elucidating the biochemistry and molecular biology of cuticle synthesis and function and highlights some of the connections to other aspects of plant biology, including signaling, pathogen defense, and development. Given the broad scope and space limitation, not every aspect of cuticle biosynthesis is covered in depth, and recent specialized reviews focusing on cuticle biomechanical properties (Domínguez et al., 2011), defensive functions (Reina-Pinto and Yephremov, 2009), and transport barrier properties (Burghardt and Riederer, 2006) may be of further interest. In addition, key ongoing questions in the field are discussed, and potential future approaches to resolving those questions are suggested.  相似文献   
37.
In vivo, collagen I, the major structural protein in human body, is found assembled into fibrils. In the present work, we study a high concentrated collagen sample in its soluble, fibrillar, and denatured states using one and two dimensional {1H}-13C solid-state NMR spectroscopy. We interpret 13C chemical shift variations in terms of dihedral angle conformation changes. Our data show that fibrillogenesis increases the side chain and backbone structural complexity. Nevertheless, only three to five rotameric equilibria are found for each amino acid residue, indicating a relatively low structural heterogeneity of collagen upon fibrillogenesis. Using side chain statistical data, we calculate equilibrium constants for a great number of amino acid residues. Moreover, based on a 13C quantitative spectrum, we estimate the percentage of residues implicated in each equilibrium. Our data indicate that fibril formation greatly affects hydroxyproline and proline prolyl pucker ring conformation. Finally, we discuss the implication of these structural data and propose a model in which the attractive force of fibrillogenesis comes from a structural reorganization of 10 to 15% of the amino acids. These results allow us to further understand the self-assembling process and fibrillar structure of collagen.  相似文献   
38.
Antimicrobial peptides produced by multicellular organisms as part of their innate system of defense against microorganisms are currently considered potential alternatives to conventional antibiotics in case of infection by multiresistant bacteria. However, while the mode of action of antimicrobial peptides is relatively well described, resistance mechanisms potentially induced or selected by these peptides are still poorly understood. In this work, we studied the mechanisms of action and resistance potentially induced by ApoEdpL-W, a new antimicrobial peptide derived from human apolipoprotein E. Investigation of the genetic response of Escherichia coli upon exposure to sublethal concentrations of ApoEdpL-W revealed that this antimicrobial peptide triggers activation of RcsCDB, CpxAR, and σE envelope stress pathways. This genetic response is not restricted to ApoEdpL-W, since several other antimicrobial peptides, including polymyxin B, melittin, LL-37, and modified S4 dermaseptin, also activate several E. coli envelope stress pathways. Finally, we demonstrate that induction of the CpxAR two-component system directly contributes to E. coli tolerance toward ApoEdpL-W, polymyxin B, and melittin. These results therefore show that E. coli senses and responds to different antimicrobial peptides by activation of the CpxAR pathway. While this study further extends the understanding of the array of peptide-induced stress signaling systems, it also provides insight into the contribution of Cpx envelope stress pathway to E. coli tolerance to antimicrobial peptides.  相似文献   
39.
The adaptive function of melanin‐based coloration is a long‐standing debate. A recent genetic model suggested that pleiotropy could account for covariations between pigmentation, behaviour, morphology, physiology and life history traits. We explored whether the expression levels of genes belonging to the melanocortin system (MC1R, POMC, PC1/3, PC2 and the antagonist ASIP), which have many pleiotropic effects, are associated with melanogenesis (through variation in the expression of the genes MITF, SLC7A11, TYR, TYRP1) and in turn melanin‐based coloration. We considered the tawny owl (Strix aluco) because individuals vary continuously from light to dark reddish, and thus, colour variation is likely to stem from differences in the levels of gene expression. We measured gene expression in feather bases collected in nestlings at the time of melanin production. As expected, the melanocortin system was associated with the expression of melanogenic genes and pigmentation. Offspring of darker reddish fathers expressed PC1/3 to lower levels but tended to express PC2 to higher levels. The convertase enzyme PC1/3 cleaves the POMC prohormone to obtain ACTH, while the convertase enzyme PC2 cleaves ACTH to produce α‐melanin‐stimulating hormone (α‐MSH). ACTH regulates glucocorticoids, hormones that modulate stress responses, while α‐MSH induces eumelanogenesis. We therefore conclude that the melanocortin system, through the convertase enzymes PC1/3 and PC2, may account for part of the interindividual variation in melanin‐based coloration in nestling tawny owls. Pleiotropy may thus account for the covariation between phenotypic traits involved in social interactions (here pigmentation) and life history, morphology, behaviour and physiology.  相似文献   
40.
Novel 3′-piperazinyl derivatives of the 8-hydrogeno and 8-methoxy-6-fluoro-1-cyclopropyl-4-quinolone-3-carboxylic acid scaffolds were designed, synthesized and characterized by 1H, 13C and 19F NMR, and HRMS. The activity of these derivatives against pathogenic mycobacteria (M. leprae and M. tuberculosis), wild-type (WT) strains or strains harboring mutations implicated in quinolone resistance, were determined by measuring drug concentrations inhibiting cell growth (MIC) and/or DNA supercoiling by DNA gyrase (IC50), or inducing 25% DNA cleavage by DNA gyrase (CC25). Compound 4 (with a methoxy in R8 and a secondary carbamate in R3′) and compound 5 (with a hydrogen in R8 and an ethyl ester in R3′) displayed biological activities close to those of ofloxacin but inferior to those of gatifloxacin and moxifloxacin against M. tuberculosis and M. leprae WT DNA gyrases, whereas all of the compounds were less active in inhibiting M. tuberculosis growth and M. leprae mutant DNA gyrases. Since R3′ substitutions have been poorly investigated previously, our results may help to design new quinolone derivatives in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号