Aedes aegypti is a mosquito vector of arboviruses such as dengue, chikungunya, zika and yellow fever that cause important public health diseases. The incidence and gravity of these diseases justifies the search for effective measures to reduce the presence of this vector in the environment. Bioinsecticides are an effective alternative method for insect control, with added ecological benefits such as biodegradability. The current study demonstrates that a chitinolytic enzyme complex produced by the fungus Trichoderma asperellum can disrupt cuticle formation in the L3 larvae phase of A. aegypti, suggesting such biolarvicidal action could be used for mosquito control. T. asperellum was exposed to chitin from different sources. This induction of cell wall degrading enzymes, including chitinase, N-acetylglucosaminidase and β-1,3-glucanase. Groups of 20 L3 larvae of A. aegypti were exposed to varying concentrations of chitinolytic enzymes induced with commercial chitin (CWDE) and larvae cell wall degrading enzymes (L-CWDE). After 72 h of exposure to the CWDE, 100% of larvae were killed. The same percent mortality was observed after 48 h of exposure to L-CWDE at half the CWDE enzyme mixture concentration. Exoskeleton deterioration was further observed by scanning and electron microscopy. Our findings indicate that L-CWDE produced by T. asperellum reflect chitinolytic enzymes with greater specificity for L3 larval biomolecules. This specificity is characterized by the high percentage of mortality compared with CWDE treatments and also by abrupt changes in patterns of the cellular structures visualized by scanning and transmission electron microscopy. These mixtures of chitinolytic enzymes could be candidates, as adjuvant or synergistic molecules, to replace conventional chemical insecticides currently in use. 相似文献
Most of the hematophagous insects act as disease vectors, including Aedes aegypti, responsible for transmitting some of the most critical arboviruses globally, such as Dengue. The use of repellents based on natural products is a promising alternative for personal protection compared to industrial chemical repellents. In this study, the repellent effect of essential oils extracted from Lippia thymoides, Lippia alba, Cymbopogon winterianus, and Eucalyptus globulus leaves was evaluated. Essential oils used showed repellent activity against Ae. aegypti in laboratory bioassays, obtaining protection rates above 70 % from 3.75 mg/mL and higher concentration for all analyzed oils. GC/MS identified 57 constituents, which were used in the ligand-based pharmacophore model to expose compounds with requirements for repellents that modulate mosquitoes behavior through odorant-binding protein 1 Ae. aegypti. Ligand-based pharmacophore model approach results suggested that repellent activity from C. winterianus, L. alba, and L. thymoides essential oils’ metabolites is related to Citronelal (QFIT=26.77), Citronelol (QFIT=11.29), Citronelol acetate (QFIT=52.22) and Geranil acetate (QFIT=10.28) with synergistic or individual activity. E. globulus essential oil's repellent activity is associated with Ledol (0.94 %; QFIT=41.95). Molecular docking was applied to understand the binding mode and affinity of the essential oils’ data set at the protein binding site. According to molecular docking, Citronelol (ChemPLP=60.98) and geranyl acetate (ChemPLP=60.55) were the best-classified compounds compared to the others and they can be explored to develop new repellents. 相似文献
Salicylic acid (SA) is a plant hormone that stimulates the growth and metabolism of plants, also acting as an abiotic elicitor. This study aimed to evaluate the effect of SA on leaf production, leaf area and synthesis of secondary compounds in yarrow plants. The experiments were conducted under field conditions in two consecutive years and f-received SA foliar applications (T1-control; T2-1.0 mmol L−1 applications at 20, 60 and 100 days after planting (DAP) and T3-1.0 mmol L−1 applications at 100 DAP during 3 days). The exogenous application of SA resulted in increases in leaf area (total and specific), number of leaves and leaf mass ratio of yarrow plants, polyphenolic compounds, phenylalanine ammonia-lyase and chalcone synthase enzymes and the antioxidant activity of the plant extract. The HPLC–DAD–MS/MS analysis of phenolic compounds revealed increases in the amounts of quinic acid and rutin. The results of this research lead us to affirm that SA exerted both the hormonal effect on number of leaves and leaf area, and also acted as eliciting substance.
The quillwort Isoëtes cangae is a critically endangered species occurring in a single lake in Serra dos Carajás, Eastern Amazon. Low genetic diversity and small effective population sizes (Ne) are expected for narrow endemic species (NES). Conservation biology studies centered in a single species show some limitations, but they are still useful considering the limited time and resources available for protection of species at risk of extinction. Here, we evaluated the genetic diversity, population structure, Ne, and minimum viable population (MVP) of I. cangae to provide information for effective conservation programs. Our analyses were based on 55 individuals collected from the Amendoim Lake and 35,638 neutral SNPs. Our results indicated a single panmictic population, moderate levels of genetic diversity, and Ne in the order of thousands, contrasting the expected for NES. Negative FIS values were also found, suggesting that I. cangae is not under risk of inbreeding depression. Our findings imply that I. cangae contains enough genetic diversity to ensure evolutionary potential and that all individuals should be treated as one demographic unit. These results provide essential information to optimize ex situ conservation efforts and genetic diversity monitoring, which are currently applied to guide I. cangae conservation plans. 相似文献
Assemblies of actin and its regulators underlie the dynamic morphology of all eukaryotic cells. To understand how actin regulatory proteins work together to generate actin-rich structures such as filopodia, we analyzed the localization of diverse actin regulators within filopodia in Drosophila embryos and in a complementary in vitro system of filopodia-like structures (FLSs). We found that the composition of the regulatory protein complex where actin is incorporated (the filopodial tip complex) is remarkably heterogeneous both in vivo and in vitro. Our data reveal that different pairs of proteins correlate with each other and with actin bundle length, suggesting the presence of functional subcomplexes. This is consistent with a theoretical framework where three or more redundant subcomplexes join the tip complex stochastically, with any two being sufficient to drive filopodia formation. We provide an explanation for the observed heterogeneity and suggest that a mechanism based on multiple components allows stereotypical filopodial dynamics to arise from diverse upstream signaling pathways. 相似文献
Remote underwater videos are widely employed to assess the structure and composition of reef fish assemblages but the sampling effort employed on each survey differs considerably, indicating that both the number of assessments and video length could be optimized. We searched for this optimal sampling effort in remote video samples to conduct rapid assessments of community composition and discussed the relation between number of replicates and video length, and how it impacts the method's efficiency to characterize species assemblages. Remote video recordings from tropical reefs in northeastern Brazil were used to investigate how fish species richness and composition builds across time and number of assays. Videos as short as 5 min successfully recorded species richness, requiring about five repetitions to record most species that compose 80% of the total biomass. Recording species composition required even less time in these reefs, setting a minimum of 3 min with the same five videos. By comparing the detected richness per analysed time unit, we found several shorter videos recorded for more species than a few longer videos, indicating that increasing the sampling coverage in the reef area might be better than just extending the video length for rapid assessments. 相似文献
Previous studies have linked oxidative stress with aging and aging-related processes, including menopause. Abnormalities in the redox state similar to those observed in menopausal women can be modeled experimentally with rat ovariectomy. The aim of the present study was to investigate the effects of vitamin A (retinol palmitate) supplementation (500 or 1,500?IU?kg(-1)?day(-1) for 30?days) on behavioral parameters and brain redox profile in ovariectomized (OVX) and sham-operated rats. Ovariectomy caused pronounced uterine atrophy and decreased locomotor/exploratory activity. Moreover, we found increased hypothalamic and frontal cortex superoxide dismutase/catalase (SOD/CAT) ratio and decreased hippocampal thiol content, accompanied by increased frontal cortex lipid oxidative damage (TBARS) in OVX rats. Vitamin A at 1,500?IUkg(-1)?day(-1) decreased exploratory behavior and decreased total hippocampal thiol content in sham-operated rats, increased hippocampal SOD/CAT ratio and decreased total antioxidant potential in the hippocampus of both sham and OVX groups, and increased cortical TBARS levels in OVX rats. Thus, vitamin A may induce a pro-oxidant state in discrete brain regions of sham-operated and OVX rats. These results suggest some caution regarding the use of high doses of vitamin A supplementation during menopause. 相似文献
Summary Some native species produce seeds with a low frequency of germination accompanied with a period of dormancy. These features
make it difficult to produce new phenotypes through sexual propagation. Maclura tinctoria has been considered an endangered species due to extensive use of its wood and low frequency of seed germination. The objective
of the present study is to establish an in vitro propagation system for this species. Organogenic friable callus formation from nodal segments has been obtained using woody
plant medium (WPM) supplemented with 10.74 μM 1-naphthaleneacetic acid (NAA)+4.43 μM 6-benzylaminopurine (BA). Results indicate that the highest frequency of shoot formation is observed when WPM supplemented
with 4.03 μM NAA+4.43 BA is used. For root formation, the use of WPM medium (pH adjusted to 7.0) supplemented with 23.62 μM indole-3-butyric acid (IBA) and 4.7gl−1 activated charcoal is recommended. For acelimatization, subjecting rooted plantlets to 70%, 50%, and 30% mesh screen, each
successively for a period of 7 d, has resulted in 97% plantlet survival. 相似文献
β?-GPI (β?-glycoprotein I) is a plasma glycoprotein ascribed with an anti-angiogenic function; however, the biological role and molecular basis of its action in cell migration remain unknown. The aim of the present study was to assess the contribution of β?-GPI to HAEC (human aortic endothelial cell) migration and the details of its underlying mechanism. Using wound healing and Boyden chamber assays, we found that β?-GPI inhibited endothelial cell migration, which was restored by its neutralizing antibody. NF-κB (nuclear factor κB) inhibitors and lentiviral siRNA (small interfering RNA) silencing of NF-κB significantly attenuated the inhibitory effect of β?-GPI on cell migration. Moreover, β?-GPI was found to induce IκBα (inhibitor of NF-κB) phosphorylation and translocation of p65 and p50. We further demonstrated that mRNA and protein levels of eNOS [endothelial NO (nitric oxide) synthase] and NO production were all increased by β?-GPI and these effects were remarkably inhibited by NF-κB inhibitors and siRNAs of p65 and p50. Furthermore, β?-GPI-mediated inhibition of cell migration was reversed by eNOS inhibitors and eNOS siRNAs. The findings of the present study provide novel insight into the ability of β?-GPI to inhibit endothelial cell migration predominantly through the NF-κB/eNOS/NO signalling pathway, which indicates a potential direction for clinical therapy in vascular diseases. 相似文献