首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1966篇
  免费   209篇
  国内免费   165篇
  2340篇
  2024年   10篇
  2023年   37篇
  2022年   60篇
  2021年   106篇
  2020年   78篇
  2019年   106篇
  2018年   128篇
  2017年   74篇
  2016年   107篇
  2015年   143篇
  2014年   153篇
  2013年   137篇
  2012年   167篇
  2011年   136篇
  2010年   79篇
  2009年   70篇
  2008年   97篇
  2007年   85篇
  2006年   72篇
  2005年   61篇
  2004年   59篇
  2003年   68篇
  2002年   80篇
  2001年   40篇
  2000年   29篇
  1999年   22篇
  1998年   23篇
  1997年   13篇
  1996年   16篇
  1995年   10篇
  1994年   12篇
  1993年   5篇
  1992年   4篇
  1991年   15篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1985年   4篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有2340条查询结果,搜索用时 8 毫秒
91.
92.
93.
94.
95.
96.
Understanding the mechanism of water infiltration through nanopores is essential for wide applications ranging from membrane separation to gene therapy. In this paper, the molecular dynamics simulation method is used to investigate the pressure-assisted water transport process through graphene nanopores. Various factors including the hydrophobicity of nanopore surface, nanopore dimension, temperature as well as external electric field that affect water in permeation into graphene nanopores are discussed. It is found that classic Laplace-Young equation fails and the relationship between pressure and diameter (D) does not follow the 1/D dependence as the characteristic dimension of a nanopore is sufficiently small (smaller than 1?nm). The critical pressure significantly depends on both the pore length and electric field as D is smaller than 5?nm. Besides, enhancing temperature and electric field intensity are obviously beneficial for water infiltration through those nanopores with a diameter smaller than 5?nm.  相似文献   
97.
Ma  Si  Li  Yaxin  Li  Xin  Sui  Xiaolei  Zhang  Zhenxian 《Journal of Plant Growth Regulation》2019,38(2):494-500
Journal of Plant Growth Regulation - Carbohydrate produced by photosynthesis is loaded into phloem via collection phloem, translocated via the transport phloem, and unloaded by release phloem into...  相似文献   
98.
Recently, numerous microRNAs (miRNAs) have been considered as key players in the regulation of neuronal processes. The purpose of the present study is to explore the effect of miR-25 on hippocampal neuron injury in Alzheimer's disease (AD) induced by amyloid β (Aβ) peptide fragment 1 to 42 (Aβ1-42) via Kruppel-like factor 2 (KLF2) through the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway. A mouse model of AD was established through Aβ1-42 induction. The underlying regulatory mechanisms of miR-25 were analyzed through treatment of miR-25 mimics, miR-25 inhibitors, or small interfering RNA (siRNA) against KLF2 in hippocampal tissues and cells isolated from AD mice. The targeting relationship between miR-25 and KLF2 was predicted using a target prediction program and verified by luciferase activity determination. MTT assay was used to evaluate the proliferative ability and flow cytometry to detect cell cycle distribution and apoptosis. KLF2 was confirmed as a target gene of miR-25. When the mice were induced by Aβ1-42, proliferation was suppressed while apoptosis was promoted in hippocampal neurons as evidenced by lower levels of KLF2, Nrf2, haem oxygenase, glutathione S transferase α1, glutathione, thioredoxin, and B-cell lymphoma-2 along with higher bax level. However, such alternations could be reversed by treatment of miR-25 inhibitors. These findings indicate that miR-25 may inhibit hippocampal neuron proliferation while promoting apoptosis, thereby aggravating hippocampal neuron injury through downregulation of KLF2 via the Nrf2 signaling pathway.  相似文献   
99.
The neuronal cell line HT22 is an excellent model for studying Parkinson's disease. Growth differentiation factor 15 (GDF15) plays a critical role in Parkinson's disease, but the molecular mechanism involved are not well understood. We constructed the GDF15 overexpression HT22 cells and detected the effects of overexpression of GDF15 on the viability, oxygen consumption, mitochondrial membrane potential of oligomycin-treated HT22 cells. In addition, we used a high-throughput RNA-sequencing to study the lncRNA and mRNA expression profiling and obtained key lncRNAs, mRNA, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway. The expression of selected DElncRNAs was validated by quantitative real-time PCR (qRT-PCR). Our results showed that overexpression of GDF15 significantly reversed the cells viability, oxygen consumption, and mitochondrial membrane potential effect caused by oligomycin in HT22 cells. The 1093 DEmRNAs and 395 DElncRNAs in HT22 cells between GDF15-oligomycin non-intervention group and a normal control-oligomycin un-intervention group were obtained, and 394 DEmRNAs and 271 DElncRNAs in HT22 cells between GDF15-oligomycin intervention group and normal control-oligomycin intervention group were identified. Base on the GO and KEGG enrichment analysis of between GDF15-oligomycin intervention group and normal control-oligomycin intervention group, positive regulation of cell proliferation was most significantly enriched GO terms, and Cav1 was enriched in positive regulation of cell proliferation pathway. PI3K-Akt signaling pathway was one significantly enriched pathway in GDF15-oligomycin intervention group. The qRT-PCR results were consistent with RNA-sequencing, generally. GDF15 might promote mitochondrial function and proliferation of HT22 cells by regulating PI3K/Akt signaling pathway. Our study may be helpful in understanding the potential molecular mechanism of GDF15 in Parkinson's disease.  相似文献   
100.
基于AnyBodyTM技术的人体运动建模方法   总被引:3,自引:0,他引:3  
人体运动的建模与仿真是当今运动生物力学研究的一个热点.利用数值模型研究人体的运动规律,是人体运动研究的一个重要手段和有效工具.其关键技术在于应用逆向运动学方法求解人体运动,并获取人体运动中各个肌肉力学上技术参数.文中主要探讨基于AnyBodyTM System软件人体运动仿真的建模方法来研究人体运动力学规律,结合The AnyBodyTM system对人体运动具体应用,说明The AnyBodyTM system技术在人体运动仿真领域的优势.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号