首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1262篇
  免费   126篇
  国内免费   140篇
  1528篇
  2024年   3篇
  2023年   23篇
  2022年   27篇
  2021年   45篇
  2020年   51篇
  2019年   52篇
  2018年   49篇
  2017年   38篇
  2016年   53篇
  2015年   77篇
  2014年   77篇
  2013年   86篇
  2012年   96篇
  2011年   87篇
  2010年   63篇
  2009年   49篇
  2008年   60篇
  2007年   46篇
  2006年   44篇
  2005年   42篇
  2004年   62篇
  2003年   60篇
  2002年   72篇
  2001年   62篇
  2000年   31篇
  1999年   26篇
  1998年   19篇
  1997年   10篇
  1996年   22篇
  1995年   11篇
  1994年   11篇
  1993年   13篇
  1992年   13篇
  1991年   6篇
  1990年   9篇
  1989年   8篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
排序方式: 共有1528条查询结果,搜索用时 15 毫秒
991.
Preterm birth (PTB) is a major cause of neonatal mortality, with a poorly understood etiology. The regular contraction of the myometrium was considered as contributing to the etiology of the onset of labor, especially PTB. Thus, studying the mechanism of myometrium contraction is very important for understanding the initiation of labor and also for preventing PTB. Using liquid chromatography-mass spectrometry, we found 322 significantly differential peptides in myometrium tissues between term nonlabor and term labor groups (absolute fold change ≥ 2 and P < .05). We next analyzed length, molecular weights, isoelectric point, and cleavage site of all the different peptides. We, next, analyzed the functions of different peptides through their precursor proteins by Gene Ontology, enrichment and canonical pathway analysis. The results indicated that the extracellular matrix (ECM) played a major role in biological process, the cellular component, and molecular function categories, and revealed that ECM remodeling played a vital role in myometrial contraction. In addition, some known signaling, such as corticotropin-releasing hormone signaling and calcium signaling were proven to be involved in this process. Ingenuity Pathways Analysis upstream regulator analysis suggested that some of the known molecules, which reportedly were very important in labor onset, were included, for example, nuclear factor κB, tubulin, and phosphoinositide 3-kinase. We also identified 23 peptides derived from the precursor protein TITIN, of which 21 peptides sequences from TITIN were located in functional domains. These results suggested that peptides play an important role in labor onset and provide further insight into PTB therapy.  相似文献   
992.
993.
Inhalation and deposition of crystalline silica particles in the lung can cause pulmonary fibrosis, then leading to silicosis. Given the paucity of effective drugs for silicosis, new insights for understanding the mechanisms of silicosis, including lung fibroblast activation and myofibroblast differentiation, are essential to explore therapeutic strategies. Our previous research showed that the up‐regulation of miR‐503 alleviated silica‐induced pulmonary fibrosis in mice. In this study, we investigated whether miR‐503 can regulate the TGF‐β1‐induced effects in lung fibroblasts. Mimic‐based strategies aiming at up‐regulating miR‐503 were used to discuss the function of miR‐503 in vivo and in vitro. We found that the expression level of miR‐503 was decreased in fibroblasts stimulated by TGF‐β1, and the up‐regulation of miR‐503 reduced the release of fibrotic factors and inhibited the migration and invasion abilities of fibroblasts. Combined with the up‐regulation of miR‐503 in a mouse model of silica‐induced pulmonary fibrosis, we revealed that miR‐503 mitigated the TGF‐β1‐induced effects in fibroblasts by regulating VEGFA and FGFR1 and then affecting the MAPK/ERK signalling pathway. In conclusion, miR‐503 exerted protective roles in silica‐induced pulmonary fibrosis and may represent a novel and potent candidate for therapeutic strategies in silicosis.  相似文献   
994.
The phenomenon that epidermal cells under the white stripes rather than black stripes contain many uric acid granules was found in larvae of several Lepidopteran species. However, the biological mechanism of this phenomenon is still unknown. In the present study, we take advantage of several silkworm (Bombyx mori) body color mutant strains to investigate the deposition patterns and biological mechanism of urate and melanin in the integuments of these mutant larvae. By imaging with transmission electron microscope, we found that there were some melanin granules in the larval cuticle in black body color mutant plain Black (pB), but not in background strain plain (p) with white larval body color. In contrast, the larval epidermal cell of background strain had much more urate granules than that of black one. Furthermore, the uric acid content under the black stripes was significantly lower than that under the white stripes in a single individual of mottled stripe (pS) with black and white stripes in each segment. Ultraviolet A (UVA) exposure experiments showed that the distinct oily (od) mutant individuals with translucent larval integument were more sensitive to the UVA damage than black body color mutant and background strain without any pigmentation in the larval cuticle. This is likely due to the absence of melanin granules and few urate granules in the integument of od mutant. Thus, both the deposited melanin granules in the cuticle and the abundant urate granules in the epidermis cells constitute effective barriers for the silkworm to resist UVA‐induced damage.  相似文献   
995.
BRD7 is a novel gene which involved NPC in our lab. Our previous studies showed that BRD7 was expressed at high level in normal nasopharyngeal epithelial tissues, but at low level in nasopharyngeal carcinoma biopsies and cell lines. In these papers, we found that ectopic expression of BRD7 can decrease cell proliferation and capability to form colonies in soft agar. FCM (Flow cytometry) assay indicated that the cell cycle progression from G1 to S phase was inhibited and the expression of cyclinD1 was significantly decreased after being transfected with BRD7 in HNE1 cells (NPC cells). To further investigate the molecular mechanism of BRD7 suppression of NPC cells growth, the cDNA microarray was performed to detect difference in gene expression profile induced by BRD7. The results indicated that 21 genes expression were changed after being transfected with BRD7 and the differentially expressed gene including α-catenin, cyclinD1, E2F3 was confirmed by western-blot. Next, we found that even though no obvious changes of the total expression of β-catenin were observed, the accumulation of β-catenin in nucleus was blocked. In addition, it was found that the expression of β-catenin was up-regulated in the complex composed of β-catenin and α-catenin in HNE1 cells induction of BRD7. So, we concluded that over-expression of BRD7 increased the expression of α-catenin which “hold” β-catenin in the complex and inhibited its accumulating in nucleus. At last, we demonstrated the c-jun, p-MEK, and p-ERK1/2 expression were down-regulated, and the Ap-1 promoter activity was inactive after being transfected with BRD7. We also found that over-expression of BRD7 can inactivate the c-jun and p-ERK1/2 after being treated with EGF in HNE1 cells. These results indicated that BRD7 played a negative role in ERK1/2 pathway. Taken together, our present results provide new insights for BRD7 function to inhibit NPC cells growth through negative regulating β-catenin and ERK1/2 pathways.  相似文献   
996.
997.
998.
999.
Liquid crystals (LCs) are conventionally divided into thermotropic or lyotropic, based on the organization and sequence of the controlled molecular system. Lipid-based lyotropic liquid crystal (LLC), such as lamellar (Lα), bicontinuous cubic (QII), or hexagonal (HII) phases, have attracted wide interest in the last few decades due to their practical potential in diverse applications and notable structural complexity. Various guest molecules, such as biopharmaceuticals, chemicals, and additives, can be solubilized in either aqueous or oily phase. And the LLC microstructure can be altered to affect the rate of drug release eventually. To utilize these microstructural variations to adjust the drug release in drug delivery system (DDS), it is crucial to understand the structure variations of the LLC caused by different types of guest molecules. Therefore, in this article, we review the effect of guest molecules on lipid-based LLC microstructures. In particular, we focus on the different characterization methods to evaluate this change caused by guest substances, such as polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), self-diffusion nuclear magnetic resonance (SD-NMR), and so on.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号