首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10179篇
  免费   927篇
  国内免费   1612篇
  2024年   37篇
  2023年   162篇
  2022年   300篇
  2021年   552篇
  2020年   420篇
  2019年   520篇
  2018年   518篇
  2017年   372篇
  2016年   454篇
  2015年   750篇
  2014年   801篇
  2013年   808篇
  2012年   1012篇
  2011年   915篇
  2010年   592篇
  2009年   544篇
  2008年   612篇
  2007年   535篇
  2006年   452篇
  2005年   410篇
  2004年   387篇
  2003年   321篇
  2002年   276篇
  2001年   157篇
  2000年   139篇
  1999年   121篇
  1998年   90篇
  1997年   93篇
  1996年   82篇
  1995年   57篇
  1994年   46篇
  1993年   33篇
  1992年   27篇
  1991年   12篇
  1990年   20篇
  1989年   10篇
  1988年   9篇
  1987年   12篇
  1986年   5篇
  1985年   12篇
  1984年   9篇
  1983年   2篇
  1982年   14篇
  1979年   2篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1965年   1篇
  1950年   5篇
  1911年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
141.
RIG-I and MDA5 are cytoplasmic RNA sensors that mediate cell intrinsic immunity against viral pathogens. While it has been well-established that RIG-I and MDA5 recognize RNA viruses, their interactive network with DNA viruses, including herpes simplex virus 1 (HSV-1), remains less clear. Using a combination of RNA-deep sequencing and genetic studies, we show that the γ134.5 gene product, a virus-encoded virulence factor, enables HSV growth by neutralization of RIG-I dependent restriction. When expressed in mammalian cells, HSV-1 γ134.5 targets RIG-I, which cripples cytosolic RNA sensing and subsequently suppresses antiviral gene expression. Rather than inhibition of RIG-I K63-linked ubiquitination, the γ134.5 protein precludes the assembly of RIG-I and cellular chaperone 14-3-3ε into an active complex for mitochondrial translocation. The γ134.5-mediated inhibition of RIG-I-14-3-3ε binding abrogates the access of RIG-I to mitochondrial antiviral-signaling protein (MAVS) and activation of interferon regulatory factor 3. As such, unlike wild type virus HSV-1, a recombinant HSV-1 in which γ134.5 is deleted elicits efficient cytokine induction and replicates poorly, while genetic ablation of RIG-I expression, but not of MDA5 expression, rescues viral growth. Collectively, these findings suggest that viral suppression of cytosolic RNA sensing is a key determinant in the evolutionary arms race of a large DNA virus and its host.  相似文献   
142.
Lung cancer is the most aggressive tumour afflicting patients on a global scale. Extracellular vesicle (EV)-delivered microRNAs (miRs) have been reported to play critical roles in cancer development. The current study aimed to investigate the role of hypoxic bone marrow mesenchymal cell (BMSC)-derived EVs containing miR-328-3p in lung cancer. miR-328-3p expression was determined in a set of lung cancer tissues by RT-qPCR. BMSCs were infected with lentivirus-mediated miR-328-3p knock-down and then cultured in normoxic or hypoxic conditions, followed by isolation of EVs. Following ectopic expression and depletion experiments in lung cancer cells, the biological functions of miR-328-3p were analysed using CCK-8 assay, flow cytometry and Transwell assay. Xenograft in nude mice was performed to test the in vivo effects of miR-328-3p delivered by hypoxic BMSC-derived EVs on tumour growth of lung cancer. Finally, the expression of circulating miR-328-3p was detected in the serum of lung cancer patients. miR-328-3p was highly expressed in EVs derived from hypoxic BMSCs. miR-328-3p was delivered to lung cancer cells by hypoxic BMSC-derived EVs, thereby promoting lung cancer cell proliferation, invasion, migration and epithelial-mesenchymal transition. miR-328-3p targeted NF2 to inactivate the Hippo pathway. Moreover, EV-delivered miR-328-3p increased tumour growth in vivo. Additionally, circulating miR-328-3p was bioactive in the serum of lung cancer patients. Taken together, our results demonstrated that hypoxic BMSC-derived EVs could deliver miR-328-3p to lung cancer cells and that miR-328-3p targets the NF2 gene, thereby inhibiting the Hippo pathway to ultimately promote the occurrence and progression of lung cancer.  相似文献   
143.
Shear stress was reported to regulate the expression of AC007362, but its underlying mechanisms remain to be explored. In this study, to isolate endothelial cells of blood vessels, unruptured and ruptured intracranial aneurysm (IA) tissues were collected from IA patients. Subsequently, quantitative real-time PCR (qRT-PCR), Western blot and luciferase assay were performed to investigate the relationships between AC007362, miRNAs-493 and monocyte chemoattractant protein-1 (MCP-1) in human umbilical vein endothelial cells (HUVECs) exposed to shear stress. Reduced representation bisulphite sequencing (RRBS) was performed to assess the level of DNA methylation in AC007362 promoter. Accordingly, AC007362 and MCP-1 were significantly up-regulated while miR-493 was significantly down-regulated in HUVECs exposed to shear stress. AC007362 could suppress the miR-493 expression and elevate the MCP-1 expression, and miR-493 was shown to respectively target AC007362 and MCP-1. Moreover, shear stress in HUVECs led to the down-regulated DNA methyltransferase 1 (DNMT1), as well as the decreased DNA methylation level of AC007362 promoter. Similar results were also observed in ruptured IA tissues when compared with unruptured IA tissues. In conclusion, this study presented a deep insight into the operation of the regulatory network of AC007362, miR-493 and MCP-1 upon shear stress. Under shear stress, the expression of AC007362 was enhanced by the inhibited promoter DNA methylation, while the expression of MCP-1 was enhanced by sponging the expression of miR-493.  相似文献   
144.
It has been reported that chemokine CX3CL1 can regulate various tumours by binding to its unique receptor CX3CR1. However, the effect of CX3CL1-CX3CR1 on the lung adenocarcinoma and lung squamous cell carcinoma is still unclear. Here, we showed that CX3CL1 can further invasion and migration of lung adenocarcinoma A549 and lung squamous cell carcinoma H520. In addition, Western blot and immunofluorescence test indicated CX3CL1 up-regulated the phosphorylation level of cortactin, which is a marker of cell pseudopodium. Meanwhile, the phosphorylation levels of c-Src and c-Abl, which are closely related to the regulation of cortactin phosphorylation, are elevated. Nevertheless, the src/abl inhibitor bosutinib and mutations of cortactin phosphorylation site could inhibit the promotion effect of CX3CL1 on invasion and migration of A549 and H520. Moreover, these results of MTT, Hoechst staining and Western blot suggested that CX3CL1 had no effect on the proliferation and apoptosis of A549 and H520 in vitro. The effects of CX3CL1 were also verified by the subcutaneous tumour formation in nude mice, which showed that it could promote proliferation and invasion of A549 in vivo. In summary, our results indicated that CX3CL1 furthered invasion and migration in lung cancer cells partly via activating cortactin, and CX3CL1 may be a potential molecule in regulating the migration and invasion of lung cancer.  相似文献   
145.
Osteoarthritis (OA) is one of the most frequent chronic joint diseases with the increasing life expectancy. The main characteristics of the disease are loss of articular cartilage, subchondral bone sclerosis and synovium inflammation. Physical measures, drug therapy and surgery are the mainstay of treatments for OA, whereas drug therapies are mainly limited to analgesics, glucocorticoids, hyaluronic acids and some alternative therapies because of single therapeutic target of OA joints. Baicalein, a traditional Chinese medicine extracted from Scutellaria baicalensis Georgi, has been widely used in anti-inflammatory therapies. Previous studies revealed that baicalein could alleviate cartilage degeneration effectively by acting on articular chondrocytes. However, the mechanisms involved in baicalein-mediated protection of the OA are not completely understood in consideration of integrality of arthrosis. In this study, we found that intra-articular injection of baicalein ameliorated subchondral bone remodelling. Further studies showed that baicalein could decrease the number of differentiated osteoblasts by inhibiting pre-osteoblasts proliferation and promoting pre-osteoblasts apoptosis. In addition, baicalein impaired angiogenesis of endothelial cells and inhibited proliferation of synovial cells. Taken together, these results implicated that baicalein might be an effective medicine for treating OA by regulating multiple targets.  相似文献   
146.
Hyperhomocysteinaemia (HHcy)-impaired endothelial dysfunction including endoplasmic reticulum (ER) stress plays a crucial role in atherogenesis. Hydrogen sulphide (H2S), a metabolic production of Hcy and gasotransmitter, exhibits preventing cardiovascular damages induced by HHcy by reducing ER stress, but the underlying mechanism is unclear. Here, we made an atherosclerosis with HHcy mice model by ApoE knockout mice and feeding Pagien diet and drinking L-methionine water. H2S donors NaHS and GYY4137 treatment lowered plaque area and ER stress in this model. Protein disulphide isomerase (PDI), a modulation protein folding key enzyme, was up-regulated in plaque and reduced by H2S treatment. In cultured human aortic endothelial cells, Hcy dose and time dependently elevated PDI expression, but inhibited its activity, and which were rescued by H2S. H2S and its endogenous generation key enzyme-cystathionine γ lyase induced a new post-translational modification-sulfhydration of PDI. Sulfhydrated PDI enhanced its activity, and two cysteine-terminal CXXC domain of PDI was identified by site mutation. HHcy lowered PDI sulfhydration association ER stress, and H2S rescued it but this effect was blocked by cysteine site mutation. Conclusively, we demonstrated that H2S sulfhydrated PDI and enhanced its activity, reducing HHcy-induced endothelial ER stress to attenuate atherosclerosis development.  相似文献   
147.
Hepatocellular cancer (HCC) has been reported to belong to one of the highly vascularized solid tumours accompanied with angiogenesis of human umbilical vein endothelial cells (HUVECs). KDM5A, an attractive drug target, plays a critical role in diverse physiological processes. Thus, this study aims to investigate its role in angiogenesis and underlying mechanisms in HCC. ChIP-qPCR was utilized to validate enrichment of H3K4me3 and KDM5A on the promotor region of miR-433, while dual luciferase assay was carried out to confirm the targeting relationship between miR-433 and FXYD3. Scratch assay, transwell assay, Edu assay, pseudo-tube formation assay and mice with xenografted tumours were conducted to investigate the physiological function of KDM5A-miR-433-FXYD3-PI3K-AKT axis in the progression of HCC after loss- and gain-function assays. KDM5A p-p85 and p-AKT were highly expressed but miR-433 was down-regulated in HCC tissues and cell lines. Depletion of KDM5A led to reduced migrative, invasive and proliferative capacities in HCC cells, including growth and a lowered HUVEC angiogenic capacity in vitro. Furthermore, KDM5A suppressed the expression of miR-433 by demethylating H3K4me3 on its promoterregion. miR-433 negatively targeted FXYD3. Depleting miR-433 or re-expressing FXYD3 restores the reduced migrative, invasive and proliferative capacities, and lowers the HUVEC angiogenic capacity caused by silencing KDM5A. Therefore, KDM5A silencing significantly suppresses HCC tumorigenesis in vivo, accompanied with down-regulated miR-433 and up-regulated FXYD3-PI3K-AKT axis in tumour tissues. Lastly, KDM5A activates the FXYD3-PI3K-AKT axis to enhance angiogenesis in HCC by suppressing miR-433.  相似文献   
148.
Wen  Bin  Yang  Peiru 《Plant Ecology》2021,222(2):209-219
Plant Ecology - Seed germination and seedling recruitment are among the most critical stages for plant population persistence and development, which may be influenced by habitat fragmentation and...  相似文献   
149.
150.
土壤氮库对生态系统的养分循环至关重要。目前多数研究主要关注氮沉降对土壤总氮的影响, 而对土壤不同有机质组分的氮库对氮沉降响应的研究较为缺乏。该研究基于内蒙古典型草地的长期多水平施氮(0、8、32、64 g·m-2·a-1)实验平台, 利用土壤密度分级方法, 探究氮添加处理13年后典型草地中两种土壤有机质组分(颗粒态有机质(POM), 矿质结合态有机质(MAOM))氮含量的变化及调控机制。结果显示: 土壤总碳含量、POM和MAOM的碳含量在施氮处理间均没有显著差异。土壤总氮含量则随着施氮水平增加呈显著增加的趋势, 同时施氮处理下POM的氮含量显著上升, 而MAOM的氮含量没有变化。进一步分析发现, 施氮促进植物地上生物量积累, 增加了凋落物量及其氮含量, 从而导致POM的氮含量增加。由于MAOM主要通过黏土矿物等吸附土壤中小分子有机质形成, 其氮含量受土壤中黏粒与粉粒含量影响, 而与氮添加水平无显著相关关系。该研究结果表明长期氮添加促进土壤氮库积累, 但增加的氮主要分布在稳定性较低的POM中, 受干扰后容易从生态系统中流失。为了更准确地评估和预测氮沉降对陆地生态系统的氮循环过程的影响, 应考虑土壤中不同有机质组分的差异响应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号