首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1113篇
  免费   84篇
  2023年   5篇
  2022年   17篇
  2021年   31篇
  2020年   31篇
  2019年   35篇
  2018年   23篇
  2017年   39篇
  2016年   37篇
  2015年   38篇
  2014年   63篇
  2013年   62篇
  2012年   90篇
  2011年   68篇
  2010年   51篇
  2009年   35篇
  2008年   50篇
  2007年   58篇
  2006年   42篇
  2005年   37篇
  2004年   32篇
  2003年   29篇
  2002年   37篇
  2001年   26篇
  2000年   35篇
  1999年   18篇
  1998年   12篇
  1997年   10篇
  1996年   10篇
  1995年   12篇
  1994年   4篇
  1993年   11篇
  1992年   15篇
  1991年   10篇
  1990年   11篇
  1989年   13篇
  1988年   15篇
  1987年   4篇
  1986年   7篇
  1985年   8篇
  1983年   3篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1974年   4篇
  1973年   5篇
  1972年   5篇
  1971年   8篇
  1969年   4篇
  1968年   6篇
  1966年   5篇
排序方式: 共有1197条查询结果,搜索用时 609 毫秒
21.
The trunk wood of Qualea labouriauana contains, besides (2R)-5,7,4′-trihydroxy-3′-methoxy-6,8-dimethylflavanone, (2R)-5,7,4′-trihydroxy-8-methylflavanone, the biosynthetically interesting 2,2′-dihydroxy-4,6,4′,6′-tetramethoxy-3,3′-dimethylbenzophenone. From the trunk wood extract of Q. paraensis the first named flavanone crystallized out directly.  相似文献   
22.
The dinoflagellate Glenodiniumhallii was investigated for its sterol composition. Five of the six sterols were isolated and identified as cholest-5-en-3β-ol, (24ξ)-24-methylcholest-5-en-3β-ol, stigmasta-5,22-dien-3β-ol, (22E,24R)-4α,23,24-trimethyl-5α-cholest-22-en-3β-ol, and 4α,23ξ,24ξ-trimethyl-5α-cholestan-3β-ol.  相似文献   
23.
After disulphide bonds are reduced with dithiothreitol, trans-3- (α-bromomethyl)-3’-[α- (trimethylammonium)methyl]azobenzene (trans-QBr) alkylates a sulfhydryl group on receptors. The membrane conductance induced by this “tethered agonist” shares many properties with that induced by reversible agonists. Equilibrium conductance increases as the membrane potential is made more negative; the voltage sensitivity resembles that seen with 50 [mu]M carbachol. Voltage- jump relaxations follow an exponential time-course; the rate constants are about twice as large as those seen with 50 μM carbachol and have the same voltage and temperature sensitivity. With reversible agonists, the rate of channel opening increases with the frequency of agonist-receptor collisions: with tethered trans-Qbr, this rate depends only on intramolecular events. In comparison to the conductance induced by reversible agonists, the QBr-induced conductance is at least 10-fold less sensitive to competitive blockade by tubocurarine and roughly as sensitive to “open-channel blockade” bu QX-222. Light-flash experiments with tethered QBr resemble those with the reversible photoisomerizable agonist, 3,3’,bis-[α-(trimethylammonium)methyl]azobenzene (Bis-Q): the conductance is increased by cis {arrow} trans photoisomerizations and decreased by trans {arrow} cis photoisomerizations. As with Bis-Q, ligh-flash relaxations have the same rate constant as voltage-jump relaxations. Receptors with tethered trans isomer. By comparing the agonist-induced conductance with the cis/tans ratio, we conclude that each channel’s activation is determined by the configuration of a single tethered QBr molecule. The QBr-induced conductance shows slow decreases (time constant, several hundred milliseconds), which can be partially reversed by flashes. The similarities suggest that the same rate-limiting step governs the opening and closing of channels for both reversible and tethered agonists. Therefore, this step is probably not the initial encounter between agonist and receptor molecules.  相似文献   
24.
25.
26.
27.
Cellular senescence is a stress response that limits the proliferation of damaged cells by establishing a permanent cell cycle arrest. Different stimuli can trigger senescence but excessive production or impaired clearance of these cells can lead to their accumulation during aging with deleterious effects. Despite this potential negative side of cell senescence, its physiological role as a pro‐regenerative and morphogenetic force has emerged recently after the identification of programmed cell senescence during embryogenesis and during wound healing and limb regeneration. Here, we explored the conservation of tissue injury‐induced senescence in a model of complex regeneration, the zebrafish. Fin amputation in adult fish led to the appearance of senescent cells at the site of damage, and their removal impaired tissue regeneration. Despite many conceptual similarities, this tissue repair response is different from developmental senescence. Our results lend support to the notion that cell senescence is a positive response promoting tissue repair and homeostasis.  相似文献   
28.
It is known that adrenaline promotes hydroxyl radical generation in isolated rat hepatocytes. The aim of this work was to investigate a potential role of NADPH oxidase (Nox) isoforms for an oxidative stress signal in response to adrenaline in hepatocytes. Enriched plasma membranes from isolated rat liver cells were prepared for this purpose. These membranes showed catalytic activity of Nox isoforms, probably Nox 2 based on its complete inhibition with specific antibodies. NADPH was oxidized to convert O2 into superoxide radical, later transformed into H2O2. This enzymatic activity requires previous activation with either 3 mM Mn2+ or guanosine 5′-0-(3-thiotriphosphate) (GTPγS) plus adrenaline. Experimental conditions for activation and catalytic steps were set up: ATP was not required; S0.5 for NADPH was 44 μM; S0.5 for FAD was 8 μM; NADH up to 1 mM was not substrate, and diphenyleneiodonium was inhibitory. Activation with GTPγS plus adrenaline was dose- and Ca2+-dependent and proceeded through α1-adrenergic receptors (AR), whereas β-AR stimulation resulted in inhibition of Nox activity. These results lead us to propose H2O2 as additional transduction signal for adrenaline response in hepatic cells.  相似文献   
29.
Key physiological functions of the intestine are governed by nerves and neurotransmitters. This complex control relies on two neuronal systems: an extrinsic innervation supplied by the two branches of the autonomic nervous system and an intrinsic innervation provided by the enteric nervous system. As a result of constant exposure to commensal and pathogenic microflora, the intestine developed a tightly regulated immune system. In this review, we cover the current knowledge on the interactions between the gut innervation and the intestinal immune system. The relations between extrinsic and intrinsic neuronal inputs are highlighted with regards to the intestinal immune response. Moreover, we discuss the latest findings on mechanisms underlying inflammatory neural reflexes and examine their relevance in the context of the intestinal inflammation. Finally, we discuss some of the recent data on the identification of the gut microbiota as an emerging player influencing the brain function.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号