首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4840篇
  免费   365篇
  国内免费   2篇
  5207篇
  2023年   30篇
  2022年   95篇
  2021年   157篇
  2020年   84篇
  2019年   122篇
  2018年   150篇
  2017年   164篇
  2016年   182篇
  2015年   251篇
  2014年   285篇
  2013年   346篇
  2012年   408篇
  2011年   397篇
  2010年   249篇
  2009年   189篇
  2008年   274篇
  2007年   279篇
  2006年   232篇
  2005年   212篇
  2004年   188篇
  2003年   158篇
  2002年   140篇
  2001年   58篇
  2000年   60篇
  1999年   44篇
  1998年   43篇
  1997年   26篇
  1996年   21篇
  1995年   26篇
  1994年   18篇
  1993年   22篇
  1992年   30篇
  1991年   24篇
  1990年   18篇
  1989年   21篇
  1988年   20篇
  1987年   9篇
  1986年   18篇
  1985年   17篇
  1984年   11篇
  1983年   9篇
  1982年   7篇
  1981年   13篇
  1980年   12篇
  1979年   7篇
  1978年   9篇
  1973年   7篇
  1972年   8篇
  1971年   8篇
  1968年   6篇
排序方式: 共有5207条查询结果,搜索用时 15 毫秒
31.
Aim  Relationships between range size and species richness are contentious, yet they are key to testing the various hypotheses that attempt to explain latitudinal diversity gradients. Our goal is to utilize the largest data set yet compiled for New World woody plant biogeography to describe and assess these relationships between species richness and range size.
Location  North and South America.
Methods  We estimated the latitudinal extent of 12,980 species of woody plants (trees, shrubs, lianas). From these estimates we quantified latitudinal patterns of species richness and range size. We compared our observations with expectations derived from two null models.
Results   Peak richness and the smallest- and largest-ranged species are generally found close to the equator. In contrast to prominent diversity hypotheses: (1) mean latitudinal extent of tropical species is greater than expected; (2) latitudinal extent appears to be decoupled from species richness across New World latitudes, with abrupt transitions across subtropical latitudes; and (3) mean latitudinal extents show equatorial and north temperate peaks and subtropical minima. Our results suggest that patterns of range size and richness appear to be influenced by three broadly overlapping biotic domains (biotic provinces) for New World woody plants.
Main conclusions  Hypotheses that assume a direct relationship between range size and species richness may explain richness patterns within these domains, but cannot explain gradients in richness across the New World.  相似文献   
32.
The organization, assembly and remodeling of the actin cytoskeleton provide force and tracks for a variety of (endo)membrane-associated events such as membrane trafficking. This review illustrates in different cellular models how actin and many of its numerous binding and regulatory proteins (actin and co-workers) participate in the structural organization of the Golgi apparatus and in trafficking-associated processes such as sorting, biogenesis and motion of Golgi-derived transport carriers.  相似文献   
33.
34.
Biological Trace Element Research - Excessive adipose tissue promotes the manifestation of endocrine disorders such as reduction of the secretion of zinc-α2-glycoprotein (ZAG), an adipokine...  相似文献   
35.
The marine waters of the Baja California peninsula (Mexico) are a rich source of brown seaweeds with a great potential for exploitation. For that reason, Sargassum sinicola, Eisenia arborea, and Macrocystis pyrifera collected from different locations were subjected to extraction of sodium alginate using a pilot-plant scale process developed in our facilities. The composition and sequence parameters of the recovered alginate were studied by infrared and nuclear magnetic resonance spectroscopy. The spectral analysis of the products revealed that sodium alginate from S. sinicola contains a greater proportion of guluronate monomers (64%) than that from E. arborea (48%), and M. pyrifera (38%). Computation of the frequencies of diads and triads indicated that the alginate from S. sinicola was constructed by intercalated guluronate-blocks of 14 residues in length. In contrast, the length of the G-block in the alginates from E. arborea and M. pyrifera were 7 and 4 residues, respectively. The results show that S. sinicola, E. arborea, and M. pyrifera are sources of sodium alginate with different mannuronate/guluronate ratios, as well as a varied building-block length. In consequence, aqueous dispersions of sodium alginate from the three studied species are expected to exhibit different physical properties.  相似文献   
36.
The study was undertaken to evaluate changes in the activity of adenosine deaminase (ADA) in brains of rats infected by Trypanosoma evansi. Each rat was intraperitoneally infected with 106 trypomastigotes either suspended in fresh (group A; n = 13) and cryopreserved blood (group B; n = 13). Thirteen animals were used as control (group C). ADA activity was estimated in the cerebellum, cerebral cortex, striatum and hippocampus. No differences (P > 0.05) in ADA activity were observed in the cerebellum between infected and non-infected animals. Significant (P < 0.05) reductions in ADA activity occurred in cerebral cortex in acutely (day 4 post-infection; PI) and chronically (day 20 PI) infected rats. ADA activity was significantly (P < 0.05) decreased in the hippocampus in acutely infected rats, but significantly (P < 0.05) increased in the chronically infected rats. Significant (P < 0.05) reductions in ADA activity occurred in the striatum of chronically infected rats. Parasites could be found in peripheral blood and brain tissue through microscopic examination and PCR assay, respectively, in acutely and chronically infected rats. The reduction of ADA activity in the brain was associated with high levels of parasitemia and anemia in acute infections. Alterations in ADA activity of the brain in T. evansi-infected rats may have implications for pathogenesis of the disease.  相似文献   
37.
A new split β‐lactamase assay promises experimental testing of the interplay of protein stability and function. Proteins are sufficiently stable to act effectively within cells. However, mutations generally destabilize structure, with effects on free energy that are comparable to the free energy of folding. Assays of protein functionality and stability in vivo enable a quick study of factors that influence these properties in response to targeted mutations. These assays can help molecular engineering but can also be used to target important questions, including why most proteins are marginally stable, how mutations alter structural makeup, and how thermodynamics, function, and environment shape molecular change. Processes of self‐organization and natural selection are determinants of stability and function. Non‐equilibrium thermodynamics provides crucial concepts, e.g., cells as emergent energy‐dissipating entities that do work and build their own parts, and a framework to study the sculpting role of evolution at different scales.  相似文献   
38.
Linkage mapping of the primary disease locus for collie eye anomaly   总被引:1,自引:0,他引:1  
Collie eye anomaly (cea) is a hereditary ocular disorder affecting development of the choroid and sclera segregating in several breeds of dog, including rough, smooth, and Border collies and Australian shepherds. The disease is reminiscent of the choroidal hypoplasia phenotype observed in humans in conjunction with craniofacial or renal abnormalities. In dogs, however, the clinical phenotype can vary significantly; many dogs exhibit no obvious clinical consequences and retain apparently normal vision throughout life, while severely affected animals develop secondary retinal detachment, intraocular hemorrhage, and blindness. We report genetic studies establishing that the primary cea phenotype, choroidal hypoplasia, segregates as an autosomal recessive trait with nearly 100% penetrance. We further report linkage mapping of the primary cea locus to a 3.9-cM region of canine chromosome 37 (LOD = 22.17 at theta = 0.076), in a region corresponding to human chromosome 2q35. These results suggest the presence of a developmental regulatory gene important in ocular embryogenesis, with potential implications for other disorders of ocular vascularization.  相似文献   
39.
An approach that enables the increase of the quantity of a specific amino acid in crop plants is reported. Oleosin gene from Arabidopsis thaliana or 30K movement protein gene of Tobacco mosaic virus (TMV; genus Tobamovirus) were cloned under the control of napin or hybrid promoters, and in fusion to synthetic poly-histidine (poly-His) sequences for transformation into spring turnip rape (Brassica rapa subsp. oleifera; synonym to B. campestris). The most stable expression cassettes for the poly-His production prior to the plant transformation were selected by analyzing the protein expression in in vitro translation and in transient plant expression systems using GFP as marker. Expression of the poly-His-constructs in transgenic Brassica rapa plants was analyzed using dot and western blotting and PCR. The constructs were stably expressed in the third generation of the transgenic plant lines. Histidine content was measured from the seeds of the transgenic plants, and some plant lines had more than 20% increase in histidine content compared to wild type. The methodology may be widely applicable to increase the content of any amino acid in crop plants including those encoded by rare codons.  相似文献   
40.

Background

The essential trace element selenium is used in a wide variety of biological processes. Selenocysteine (Sec), the 21st amino acid, is co-translationally incorporated into a restricted set of proteins. It is encoded by an UGA codon with the help of tRNASec (SelC), Sec-specific elongation factor (SelB) and a cis-acting mRNA structure (SECIS element). In addition, Sec synthase (SelA) and selenophosphate synthetase (SelD) are involved in the biosynthesis of Sec on the tRNASec. Selenium is also found in the form of 2-selenouridine, a modified base present in the wobble position of certain tRNAs, whose synthesis is catalyzed by YbbB using selenophosphate as a precursor.

Results

We analyzed completely sequenced genomes for occurrence of the selA, B, C, D and ybbB genes. We found that selB and selC are gene signatures for the Sec-decoding trait. However, selD is also present in organisms that do not utilize Sec, and shows association with either selA, B, C and/or ybbB. Thus, selD defines the overall selenium utilization. A global species map of Sec-decoding and 2-selenouridine synthesis traits is provided based on the presence/absence pattern of selenium-utilization genes. The phylogenies of these genes were inferred and compared to organismal phylogenies, which identified horizontal gene transfer (HGT) events involving both traits.

Conclusion

These results provide evidence for the ancient origin of these traits, their independent maintenance, and a highly dynamic evolutionary process that can be explained as the result of speciation, differential gene loss and HGT. The latter demonstrated that the loss of these traits is not irreversible as previously thought.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号