首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   61篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   9篇
  2016年   12篇
  2015年   22篇
  2014年   13篇
  2013年   29篇
  2012年   26篇
  2011年   30篇
  2010年   19篇
  2009年   26篇
  2008年   26篇
  2007年   20篇
  2006年   18篇
  2005年   20篇
  2004年   12篇
  2003年   15篇
  2002年   13篇
  2001年   11篇
  2000年   13篇
  1999年   19篇
  1998年   6篇
  1997年   10篇
  1996年   7篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   7篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1982年   4篇
  1981年   4篇
  1979年   1篇
  1978年   2篇
  1977年   5篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1969年   1篇
  1954年   1篇
  1952年   1篇
排序方式: 共有460条查询结果,搜索用时 31 毫秒
81.
Inflammatory cytokines have been linked to obesity-related insulin resistance. To investigate the effect of TNF-α, an inflammatory cytokine, on insulin action, C57BL/6J mice were treated with TNF-α for 7 days after which we examined the in vivo effects of TNF-α on glucose tolerance and insulin sensitivity with IV glucose tolerance tests and hyperinsulinemic-euglycemic clamps. In addition, we analyzed the in vivo effect of TNF-α on several metabolism-related genes and adipocytokines implicated in the development of insulin resistance. TNF-α treatment resulted in markedly increased fasting blood glucose, insulin and free fatty acids (FFA) levels and reduced glucose tolerance. During the clamps, the rates insulin-stimulated whole body (GRd) and skeletal muscle glucose uptake (MGU) and insulin’s ability to suppress hepatic glucose production (HGP) were decreased in TNF-α treated animals, indicating insulin resistance. In addition, both PPARγ and ATGL mRNA expression in adipose tissues as well as ATGL protein levels in plasma were downregulated. Moreover, adipose mRNA expression and plasma protein levels of adiponectin and visfatin were significantly down-regulated. We conclude that the alterations of PPARγ, ATGL, adiponectin and visfatin may contribute to the development of insulin resistance mediated by TNF-α.  相似文献   
82.
Changes in the balance of cholesterol absorption and synthesis and moderately elevated plasma plant sterols have been suggested to be atherogenic. Measuring cholestanol, lathosterol, campesterol, and sitosterol, we investigated the relationships of cholesterol metabolism and plasma plant sterols with the severity of coronary artery disease (CAD) in 2,440 participants of the Ludwigshafen Risk and Cardiovascular health (LURIC) study. The coronary status was determined by angiography, and the severity of CAD was assessed by the Friesinger Score (FS). An increase in the ratio of cholestanol to cholesterol was associated with high FS (P = 0.006). In contrast, a high ratio of lathosterol to cholesterol went in parallel with low FS (P < 0.001). Whereas the campesterol to cholesterol ratio significantly correlated with the FS (P = 0.026), the relationship of the sitosterol to cholesterol ratio with the FS did not reach statistical significance in the whole group. Increased campesterol, sitosterol, and cholestanol to lathosterol ratios were associated high FS (P < 0.001). To conclude, there is a modest association of high cholesterol absorption and low cholesterol synthesis with an increased severity of CAD. An atherogenic role of plasma plant sterols themselves, however, seems unlikely in subjects without sitosterolaemia.  相似文献   
83.

Background  

Methylation of lysine 79 on histone H3 by Dot1 is required for maintenance of heterochromatin structure in yeast and humans. However, this histone modification occurs predominantly in euchromatin. Thus, Dot1 affects silencing by indirect mechanisms and does not act by the recruitment model commonly proposed for histone modifications. To better understand the role of H3K79 methylation gene silencing, we investigated the silencing function of Dot1 by genetic suppressor and enhancer analysis and examined the relationship between Dot1 and other global euchromatic histone modifiers.  相似文献   
84.
Genetic manipulation of lipid biosynthetic enzymes allows modification of cellular membranes. We made use of this strategy and constructed mutants in phospholipid metabolism of Pichia pastoris , which is widely used in biotechnology for expression of heterologous proteins. Here we describe identification of two P. pastoris phosphatidylserine decarboxylases (PSDs) encoded by genes homologous to PSD1 and PSD2 from Saccharomyces cerevisiae . Using P. pastoris psd1 Δ and psd2 Δ mutants we investigated the contribution of the respective gene products to phosphatidylethanolamine synthesis, membrane composition and cell growth. Deletion of PSD1 caused loss of PSD activity in mitochondria, a severe growth defect on minimal media and depletion of cellular and mitochondrial phosphatidylethanolamine levels. This defect could not be compensated by Psd2p, but by supplementation with ethanolamine, which is the substrate for the cytidine diphosphate (CDP)–ethanolamine pathway, the third route of phosphatidylethanolamine synthesis in yeast. Fatty acid analysis showed selectivity of both Psd1p and Psd2p in vivo for the synthesis of unsaturated phosphatidylethanolamine species. Phosphatidylethanolamine species containing palmitic acid (16:0), however, were preferentially assembled into mitochondria. In summary, this study provides first insight into membrane manipulation of P. pastoris , which may serve as a useful method to modify cell biological properties of this microorganism for biotechnological purposes.  相似文献   
85.

Background

Class II MHC molecules (MHC II) are cell surface receptors displaying short protein fragments for the surveillance by CD4+ T cells. Antigens therefore have to be loaded onto this receptor in order to induce productive immune responses. On the cell surface, most MHC II molecules are either occupied by ligands or their binding cleft has been blocked by the acquisition of a non-receptive state. Direct loading with antigens, as required during peptide vaccinations, is therefore hindered.

Principal Findings

Here we show, that the in vivo response of CD4+ T cells can be improved, when the antigens are administered together with ‘MHC-loading enhancer’ (MLE). MLE are small catalytic compounds able to open up the MHC binding site by triggering ligand-release and stabilizing the receptive state. Their enhancing effect on the immune response was demonstrated here with an antigen from the influenza virus and tumour associated antigens (TAA) derived from the NY-ESO-1 protein. The application of these antigens in combination with adamantane ethanol (AdEtOH), an MLE compound active on human HLA-DR molecules, significantly increased the frequency of antigen-specific CD4+ T cells in mice transgenic for the human MHC II molecule. Notably, the effect was evident only with the MLE-susceptible HLA-DR molecule and not with murine MHC II molecules non-susceptible for the catalytic effect of the MLE.

Conclusion

MLE can specifically increase the potency of a vaccine by facilitating the efficient transfer of the antigen onto the MHC molecule. They may therefore open a new way to improve vaccination efficacy and tumour-immunotherapy.  相似文献   
86.
The structure of Red clover necrotic mosaic virus (RCNMV), an icosahedral plant virus, was resolved to 8.5 A by cryoelectron microscopy. The virion capsid has prominent surface protrusions and subunits with a clearly defined shell and protruding domains. The structures of both the individual capsid protein (CP) subunits and the entire virion capsid are consistent with other species in the Tombusviridae family. Within the RCNMV capsid, there is a clearly defined inner cage formed by complexes of genomic RNA and the amino termini of CP subunits. An RCNMV virion has approximately 390 +/- 30 Ca2+ ions bound to the capsid and 420 +/- 25 Mg2+ ions thought to be in the interior of the capsid. Depletion of both Ca2+ and Mg2+ ions from RCNMV leads to significant structural changes, including (i) formation of 11- to 13-A-diameter channels that extend through the capsid and (ii) significant reorganization within the interior of the capsid. Genomic RNA within native capsids containing both Ca2+ and Mg2+ ions is extremely resistant to nucleases, but depletion of both of these cations results in nuclease sensitivity, as measured by a significant reduction in RCNMV infectivity. These results indicate that divalent cations play a central role in capsid dynamics and suggest a mechanism for the release of viral RNA in low-divalent-cation environments such as those found within the cytoplasm of a cell.  相似文献   
87.
During eukaryotic cell division, the sister chromatids of duplicated chromosomes are pulled apart by microtubules, which connect via kinetochores. The kinetochore is a multiprotein structure that links centromeres to microtubules, and that emits molecular signals in order to safeguard the equal distribution of duplicated chromosomes over daughter cells. Although microtubule‐mediated chromosome segregation is evolutionary conserved, kinetochore compositions seem to have diverged. To systematically inventory kinetochore diversity and to reconstruct its evolution, we determined orthologs of 70 kinetochore proteins in 90 phylogenetically diverse eukaryotes. The resulting ortholog sets imply that the last eukaryotic common ancestor (LECA) possessed a complex kinetochore and highlight that current‐day kinetochores differ substantially. These kinetochores diverged through gene loss, duplication, and, less frequently, invention and displacement. Various kinetochore components co‐evolved with one another, albeit in different manners. These co‐evolutionary patterns improve our understanding of kinetochore function and evolution, which we illustrated with the RZZ complex, TRIP13, the MCC, and some nuclear pore proteins. The extensive diversity of kinetochore compositions in eukaryotes poses numerous questions regarding evolutionary flexibility of essential cellular functions.  相似文献   
88.
Reproductive efficiency is not optimal in high-producing dairy cows. Although many aspects of ovarian follicular growth in cows are similar to those observed in heifers, there are numerous specific differences in follicular development that may be linked with changes in reproductive physiology in high-producing lactating dairy cows. These include: 1) reduced circulating estradiol (E2) concentrations near estrus, 2) ovulation of follicles that are larger than the optimal size, 3) increased double ovulation and twinning, and 4) increased incidence of anovulation with a distinctive pattern of follicle growth in anovular dairy cows. The first three changes become more dramatic as milk production increases, although anovulation has not generally been associated with level of milk production. To overcome reproductive inefficiencies in dairy cows, reproductive management programs have been developed to synchronize ovulation and enable the use of timed AI in lactating dairy cows. Effective regulation of the CL, follicles, and hormonal environment during each part of the protocol is critical for optimizing these programs. This review discusses the distinct aspects of follicular development in lactating dairy cows and the methodologies that have been utilized in the past two decades in order to manage the dominant follicle during synchronization of ovulation and timed AI programs.  相似文献   
89.
Flap endonuclease (FEN1), essential for DNA replication and repair, removes RNA and DNA 5' flaps. FEN1 5' nuclease superfamily members acting in nucleotide excision repair (XPG), mismatch repair (EXO1), and homologous recombination (GEN1) paradoxically incise structurally distinct bubbles, ends, or Holliday junctions, respectively. Here, structural and functional analyses of human FEN1:DNA complexes show structure-specific, sequence-independent recognition for nicked dsDNA bent 100° with unpaired 3' and 5' flaps. Above the active site, a helical cap over a gateway formed by two helices enforces ssDNA threading and specificity for free 5' ends. Crystallographic analyses of product and substrate complexes reveal that dsDNA binding and bending, the ssDNA gateway, and double-base unpairing flanking the scissile phosphate control precise flap incision by the two-metal-ion active site. Superfamily conserved motifs bind and open dsDNA; direct the target region into the helical gateway, permitting only nonbase-paired oligonucleotides active site access; and support a unified understanding of superfamily substrate specificity.  相似文献   
90.
Global sumoylation, SUMO chain formation, and genome stabilization are all outputs generated by a limited repertoire of enzymes. Mechanisms driving selectivity for each of these processes are largely uncharacterized. Here, through crystallographic analyses we show that the SUMO E2 Ubc9 forms a noncovalent complex with a SUMO-like domain of Rad60 (SLD2). Ubc9:SLD2 and Ubc9:SUMO noncovalent complexes are structurally analogous, suggesting that differential recruitment of Ubc9 by SUMO or Rad60 provides a novel means for such selectivity. Indeed, deconvoluting Ubc9 function by disrupting either the Ubc9:SLD2 or Ubc9:SUMO noncovalent complex reveals distinct roles in facilitating sumoylation. Ubc9:SLD2 acts in the Nse2 SUMO E3 ligase-dependent pathway for DNA repair, whereas Ubc9:SUMO instead promotes global sumoylation and chain formation, via the Pli1 E3 SUMO ligase. Moreover, this Pli1-dependent SUMO chain formation causes the genome instability phenotypes of SUMO-targeted ubiquitin ligase (STUbL) mutants. Overall, we determine that, unexpectedly, Ubc9 noncovalent partner choice dictates the role of sumoylation in distinct cellular pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号