首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1041篇
  免费   48篇
  2021年   11篇
  2019年   15篇
  2018年   12篇
  2017年   17篇
  2016年   15篇
  2015年   16篇
  2014年   24篇
  2013年   33篇
  2012年   34篇
  2011年   29篇
  2010年   30篇
  2009年   19篇
  2008年   30篇
  2007年   55篇
  2006年   45篇
  2005年   30篇
  2004年   36篇
  2003年   31篇
  2002年   42篇
  2001年   33篇
  2000年   42篇
  1999年   25篇
  1998年   6篇
  1996年   5篇
  1992年   8篇
  1991年   20篇
  1990年   29篇
  1989年   16篇
  1988年   27篇
  1987年   24篇
  1986年   30篇
  1985年   23篇
  1984年   15篇
  1983年   22篇
  1982年   8篇
  1980年   10篇
  1979年   31篇
  1978年   21篇
  1977年   18篇
  1976年   9篇
  1975年   13篇
  1974年   18篇
  1973年   14篇
  1972年   17篇
  1971年   13篇
  1970年   7篇
  1969年   8篇
  1968年   8篇
  1967年   13篇
  1966年   6篇
排序方式: 共有1089条查询结果,搜索用时 0 毫秒
21.
22.
23.
Environmental pollution is currently identified as one of the major drivers of rapid decline of insect populations, and this finding has revitalized interest in insect responses to pollution. We tested the hypothesis that the pollution-induced decline of insect populations can be predicted from phenotypic stress responses expressed as morphological differences between populations inhabiting polluted and unpolluted sites. We explored populations of the brassy tortrix Eulia ministrana in subarctic forests along an environmental disturbance gradient created by long-lasting severe impacts of aerial emissions of the copper–nickel smelter in Monchegorsk, northwestern Russia. We used pheromone traps to measure the population densities of this leafrolling moth and to collect specimens for assessment of three morphological stress indices: size, forewing melanization, and fluctuating asymmetry in wing venation. Wing length of E. ministrana increased by 10%, and neither forewing melanization nor fluctuating asymmetry changed from the unpolluted forest to the heavily polluted industrial barren. However, the population density of E. ministrana decreased 5 to 10 fold in the same pollution gradient. Thus, none of the studied potential morphological stress indicators signaled vulnerability of E. ministrana to environmental pollution and/or to pollution-induced environmental disturbance. We conclude that insect populations can decline without any visible signs of stress. The use of morphological proxies of insect fitness to predict the consequences of human impact on insect populations is therefore risky until causal relationships between these proxies and insect abundance are deciphered.  相似文献   
24.
Protein disulfide isomerases comprise a large family of enzymes responsible for catalyzing the proper oxidation and folding of newly synthesized proteins in the endoplasmic reticulum (ER). Protein disulfide isomerase-related (PDIR) protein (also known as PDIA5) is a specialized member that participates in the folding of α1-antitrypsin and N-linked glycoproteins. Here, the crystal structure of the non-catalytic domain of PDIR was determined to 1.5 Å resolution. The structure adopts a thioredoxin-like fold stabilized by a structural disulfide bridge with a positively charged binding surface for interactions with the ER chaperones, calreticulin and ERp72. Crystal contacts between molecules potentially mimic the interactions of PDIR with misfolded substrate proteins. The results suggest that the non-catalytic domain of PDIR plays a key role in the recognition of protein partners and substrates.  相似文献   
25.
26.
Taratuhin  O. D.  Novikova  L. Yu.  Seferova  I. V.  Gerasimova  T. V.  Nuzhdin  S. V.  Samsonova  M. G.  Kozlov  K. N. 《Biophysics》2020,65(1):106-117
Biophysics - Abstract—Soybean phenology is strongly influenced by temperature and day length, and phenological records clearly reflect the changes in climatic conditions. A model including...  相似文献   
27.
This study addresses mechanisms for the generation and selection of visual behaviors in anamniotes. To demonstrate the function of these mechanisms, we have constructed an experimental platform where a simulated animal swims around in a virtual environment containing visually detectable objects. The simulated animal moves as a result of simulated mechanical forces between the water and its body. The undulations of the body are generated by contraction of simulated muscles attached to realistic body components. Muscles are driven by simulated motoneurons within networks of central pattern generators. Reticulospinal neurons, which drive the spinal pattern generators, are in turn driven directly and indirectly by visuomotor centers in the brainstem. The neural networks representing visuomotor centers receive sensory input from a simplified retina. The model also includes major components of the basal ganglia, as these are hypothesized to be key components in behavior selection. We have hypothesized that sensorimotor transformation in tectum and pretectum transforms the place-coded retinal information into rate-coded turning commands in the reticulospinal neurons via a recruitment network mimicking the layered structure of tectal areas. Via engagement of the basal ganglia, the system proves to be capable of selecting among several possible responses, even if exposed to conflicting stimuli. The anatomically based structure of the control system makes it possible to disconnect different neural components, yielding concrete predictions of how animals with corresponding lesions would behave. The model confirms that the neural networks identified in the lamprey are capable of responding appropriately to simple, multiple, and conflicting stimuli.  相似文献   
28.
A new genus and species of bacteria capable of ammonium oxidation under anaerobic conditions in the presence of nitrite is described. The enrichment culture was obtained from the Moscow River silt by sequential cultivation in reactors with selective conditions for anaerobic ammonium oxidation. Bacterial cells were coccoid, ~0.4 × 0.7 μm, with the intracellular membrane structures typical of bacteria capable of anaerobic ammonium oxidation (anammoxosome and paryphoplasm). The cells formed aggregates 5–25 μm in diameter (10 μm on average). They were readily adhered to solid surfaces. The cells were morphologically labile: they easily lost their content and changed their morphology during fixation for electron microscopy. The organism was capable of ammonium oxidation with nitrite. The semisaturation constants Ks for nitrite and ammonium were 0.38 mg N-NO2/L and 0.41 mg N-NH4/L, respectively. The maximal nitrite concentrations for growth were 90 and 75 mg N-NO2/L for single and continuous application, respectively. The doubling time was 32 days, μmax = 0.022 day?1, the optimal temperature and pH were 20°C and 7.8–8.3, respectively. According to the results of 16S rRNA gene sequencing, the bacterium was assigned to a new genus and species within the phylum Planctomycetes. The proposed name for the new bacterium is Candidatus Anammoximicrobium moscowii gen. nov., sp. nov. (a microorganism carrying out anaerobic ammonium oxidation, isolated in the Moscow region).  相似文献   
29.
Escherichia coli single-stranded DNA binding protein (SSB) plays essential roles in DNA replication, recombination and repair. SSB functions as a homotetramer with each subunit possessing a DNA binding domain (OB-fold) and an intrinsically disordered C-terminus, of which the last nine amino acids provide the site for interaction with at least a dozen other proteins that function in DNA metabolism. To examine how many C-termini are needed for SSB function, we engineered covalently linked forms of SSB that possess only one or two C-termini within a four-OB-fold “tetramer”. Whereas E. coli expressing SSB with only two tails can survive, expression of a single-tailed SSB is dominant lethal. E. coli expressing only the two-tailed SSB recovers faster from exposure to DNA damaging agents but accumulates more mutations. A single-tailed SSB shows defects in coupled leading and lagging strand DNA replication and does not support replication restart in vitro. These deficiencies in vitro provide a plausible explanation for the lethality observed in vivo. These results indicate that a single SSB tetramer must interact simultaneously with multiple protein partners during some essential roles in genome maintenance.  相似文献   
30.
Deformations of cell nuclei accompany a number of essential intracellular processes. Although evidence is being accumulated on the primary role actin structures play in controlling the shape of the nucleus, the mechanisms behind this phenomenon remain unknown. Here, we consider theoretically a specific paradigm of nuclear deformation, and a related actin rearrangement, in T cells stimulated by contact with a bead covered by surrogate antigens. We suggest that the nucleus is deformed by the elastic forces developed within a cylindrical layer of polymerized actin, which is generated as a result of the receptor-mediated T-cell activation. We substantiate this proposal with a theoretical analysis of mutual deformations in the actin layer and the nucleus, which recovers the experimentally observed nuclear shapes. Furthermore, we evaluate the forces developed by the actin polymerization that drives the nuclear deformation. The model predicts the mode of actin polymerization generated by the surrogate antigens covering a bead and the values of the elastic moduli of the nuclear shell. We provide a qualitative experimental support for the model assumptions by visualizing the stages of nuclear shape change and the corresponding evolution of the cortical actin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号