首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   876篇
  免费   65篇
  国内免费   1篇
  2022年   6篇
  2021年   8篇
  2020年   5篇
  2019年   4篇
  2018年   9篇
  2017年   9篇
  2016年   18篇
  2015年   22篇
  2014年   39篇
  2013年   58篇
  2012年   75篇
  2011年   59篇
  2010年   49篇
  2009年   28篇
  2008年   48篇
  2007年   48篇
  2006年   44篇
  2005年   50篇
  2004年   52篇
  2003年   36篇
  2002年   53篇
  2001年   12篇
  2000年   11篇
  1999年   11篇
  1998年   17篇
  1997年   8篇
  1996年   13篇
  1995年   13篇
  1994年   11篇
  1993年   12篇
  1992年   12篇
  1991年   7篇
  1990年   9篇
  1988年   3篇
  1987年   6篇
  1984年   5篇
  1983年   3篇
  1982年   10篇
  1981年   7篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1975年   6篇
  1974年   4篇
  1973年   2篇
  1971年   3篇
  1969年   2篇
  1961年   2篇
排序方式: 共有942条查询结果,搜索用时 31 毫秒
131.
In disturbed habitats, vegetative regeneration is partly ruled by plant reserves and intrinsic growth rates. Under nutrient-limiting conditions, perennial plants tend to exhibit an increased allocation to storage organs. Under mechanically stressful conditions, plants also tend to increase allocation to below-ground biomass and storage organs. We tested whether those stresses acting differently on plants (nutrient level versus mechanical forces) led to similar effect on storage organs and regeneration ability. We measured, for an aquatic plant species, (1) the size and allocation to storage organs (stems) and (2) the regeneration ability of the storage organs. Plant stems were collected in 4 habitats ranked along a nutrient stress gradient, and having encountered null versus significant mechanical stress (flowing water). All stems were placed in similar neutral conditions and left for a period of 6 weeks before measuring their survival and growth. Dry mass allocation to the storage organ (stem) was higher in stressful habitats. Moreover, stress encountered by plants before the experiment significantly affected regeneration: stems of previously stressed plants (i.e. plants that had grown in nutrient-poor or mechanically stressful habitats) survived better than unstressed ones. Stems of plants having encountered mechanical stress before the experiment had increased growth in nutrient-rich habitats but reduced growth in the poorest habitats. These results demonstrate that regeneration could rely on the level of stress previously encountered by plants. Stress could lead to greater regeneration ability following mechanical failure. The possible mechanisms involved in these results are discussed.  相似文献   
132.
Nutrition of the world's population in the 21st century often appears as an unsolved problem. The challenges are bigger than an increase in agricultural production. From a brief review on the history of food production diverse aspects of the development become evident: innovations with their beneficial and non‐beneficial aspects, e.g. the, green revolution' increasing the rice yields on one hand and the number of landless people on the other. Great differences can be found in agricultural productivity: the yields of the presently area under the plough can be increased. Climate change impacts on the framework of agricultural production with losses and gains of arable land. The challenges of global nutrition cannot be met by innovations in plant breeding and cultivation alone. Socioeconomic factors, education, and health become increasingly important.  相似文献   
133.
134.
Fusion proteins of the extracellular parts of cytokine receptors, also known as cytokine traps, turned out to be promising cytokine inhibitors useful in anti-cytokine therapies. Here we present newly designed cytokine traps for murine and human leukemia inhibitory factor (LIF) as prototypes for inhibitors targeting cytokines that signal through a heterodimer of two signaling receptors of the glycoprotein 130 (gp130) family. LIF signals through a receptor heterodimer of LIF receptor (LIFR) and gp130 and induces the tyrosine phosphorylation of STAT3 leading to target gene expression. The analysis of various receptor fusion and deletion constructs revealed that a truncated form of the murine LIF receptor consisting of the first five extracellular domains was a potent inhibitor for human LIF. For the efficient inhibition of murine LIF, the cytokine-binding module of murine gp130 had to be fused to the first five domains of murine LIFR generating mLIF-RFP (murine LIFR fusion protein). The tyrosine phosphorylation of STAT3 and subsequent gene induction induced by human or murine LIF are completely blocked by the respective inhibitor. Furthermore, both inhibitors are specific and do not alter the bioactivities of the closely related cytokines interleukin (IL)-6 and oncostatin M. The gained knowledge on the construction of LIF inhibitors can be transferred to the design of inhibitors for related cytokines such as IL-31, IL-27, and oncostatin M for the treatment of inflammatory and malignant diseases.  相似文献   
135.
Heme carrier HasA has a unique type of histidine/tyrosine heme iron ligation in which the iron ion is in a thermally driven two spin states equilibrium. We recently suggested that the H-bonding between Tyr75 and the invariantly conserved residue His83 modulates the strength of the iron-Tyr75 bond. To unravel the role of His83, we characterize the iron ligation and the electronic properties of both wild type and H83A mutant by a variety of spectroscopic techniques. Although His83 in wild type modulates the strength of the Tyr-iron bond, its removal causes detachment of the tyrosine ligand, thus giving rise to a series of pH-dependent equilibria among species with different axial ligation. The five coordinated species detected at physiological pH may represent a possible intermediate of the heme transfer mechanism to the receptor.  相似文献   
136.

Background and Aims

The plastic alterations of clonal architecture are likely to have functional consequences, as they affect the spatial distribution of ramets over patchy environments. However, little is known about the effect of mechanical stresses on the clonal growth. The aim of the present study was to investigate the clonal plasticity induced by mechanical stress consisting of continuous water current encountered by aquatic plants. More particularly, the aim was to test the capacity of the plants to escape this stress through clonal plastic responses.

Methods

The transplantation of ramets of the same clone in two contrasting flow velocity conditions was carried out for two species (Potamogeton coloratus and Mentha aquatica) which have contrasting clonal growth forms. Relative allocation to clonal growth, to creeping stems in the clonal biomass, number and total length of creeping stems, spacer length and main creeping stem direction were measured.

Key Results

For P. coloratus, plants exposed to water current displayed increased total length of creeping stems, increased relative allocation to creeping stems within the clonal dry mass and increased spacer length. For M. aquatica, plants exposed to current displayed increased number and total length of creeping stems. Exposure to current induced for both species a significant increase of the proportion of creeping stems in the downstream direction to the detriment of creeping stems perpendicular to flow.

Conclusions

This study demonstrates that mechanical stress from current flow induced plastic variation in clonal traits for both species. The responses of P. coloratus could lead to an escape strategy, with low benefits with respect to sheltering and anchorage. The responses of M. aquatica that may result in a denser canopy and enhancement of anchorage efficiency could lead to a resistance strategy.Key words: Phenotypic plasticity, morphology, submerged aquatic vegetation, clonality, clonal architecture, Potamogeton coloratus, Mentha aquatica, escape, resistance, mechanical stress, thigmomorphogenesis  相似文献   
137.
A total of 37 strains of aquatic hyphomycetes and 95 fungal isolates derived from diverse freshwater environments were screened on agar plates for the decolourisation of the disazo dye Reactive Black 5 and the anthraquinone dye Reactive Blue 19. The decolourisation of 9 azo and 3 anthraquinone dyes by 9 selected aquatic fungi was subsequently assessed in a liquid test system. The fungi were representatives of mitosporic anamorphs, and 6 strains had proven ascomycete affiliations. For comparison, 5 white rot basidiomycetes were included. The majority of dyes were decolourised by several mitosporic aquatic isolates at rates essentially comparable to those observed with the most efficient white rot fungus. Under certain conditions, particular aquatic strains decolourised dyes even more efficiently than the best performing white rot basidiomycete. Upon fungal treatment of several dyes, new absorbance peaks appeared, indicating biotransformation metabolites. All together, these results point to the potential of fungi occurring in freshwater environments for the treatment of dye-containing effluents.  相似文献   
138.
The seasonal pattern of bivalve spat settlement in Eyjafjordur, North Iceland, was investigated using artificial collectors of monofilament netting over 14 months (March 1998–January 2000) at 5, 10 and 15 m depth. SCUBA divers replaced the collectors at 4-weekly intervals. Twelve bivalve species settled on the collectors but only Mytilus edulis and Hiatella arctica were present throughout the year; they were the most abundant bivalve taxa. Of the remaining species, only Chlamys islandica, Heteranomia spp., Arctica islandica, Serripes groenlandicus and Mya spp. were sufficiently abundant to enable statistical analysis. All settled in late summer and autumn. Peak settlement of M. edulis, in September, consisted mainly of primary settlers (0.25–0.5 mm) although secondary settlers (>0.5 mm) were present in all samples. Mytilus edulis settled mostly at 5 m depth, especially larger individuals, possibly reflecting stronger currents at shallower depth and the proximity of mussel beds in the intertidal zone. Primary (<1 mm) and secondary H. arctica settlers (>1 mm) were present in most months, with the former being most numerous in September, 1999; settlement was equally abundant at 5 and 10 m depth. Primary settlement of C. islandica and S. groenlandicus occurred in autumn (mainly in September), and secondary settlers were very scarce and only seen in winter. Arctica islandica, Heteranomia spp. and Mya spp. settled mainly in September 1999 at 10 m depth, except for A. islandica, which was more numerous in August.  相似文献   
139.
As part of a genome scan, ESTs derived from mammary gland tissue of a lactating cow were used as candidate genes for quantitative trait loci (QTL), affecting milk production traits. Resource families were genotyped with 247 microsatellite markers and 4 polymorphic ESTs. It was shown by linkage analysis that one of these ESTs, KIEL_E8, mapped to the centromeric region of bovine Chromosome (Chr) 14. Regression analysis revealed the presence of a QTL, with significant effect on milk production, in this chromosome region, and analysis of variance showed no significant interaction of marker genotype and family. The estimated significant differences between homozygous marker genotypes were 140 kg milk, −5.02 kg fat yield, and 2.58 kg protein yield for the first 100 days of lactation. Thus, there was strong evidence for a complete or nearly complete linkage disequilibrium between KIEL_E8 and the QTL. To identify the biological function of KIEL_E8, we extended the sequence for 869 bp by 5′-RACE. A 560-bp fragment of this shows a 90.9% similarity to a gene encoding a cysteine- and histidine-rich cytoplasmic protein in mouse. Although such a protein may have a regulatory function for lactation and a linkage disequilibrium between the EST marker and the QTL has been observed, it remains to be elucidated whether they are identical or not. Nevertheless, KIEL_E8 will be an efficient marker to perform marker-assisted selection in the Holstein-Friesian population. Received 20 October 2000 / Accepted: 11 April 2001  相似文献   
140.
The twisted gastrulation gene (tsg) encodes a secreted protein required for the correct specification of dorsal midline cell fate during gastrulation in Drosophila. We report that tsg homologs from human, mouse, zebrafish, and Xenopus share 72–98% identity at the amino acid level and retain all 24 cysteine residues from Drosophila. In contrast to Drosophila where tsg expression is limited to early embryos, expression is found throughout mouse and human development. In Drosophila, tsg acts in synergy with decapentaplegic (dpp), a member of the TGF-β family of secreted proteins. The vertebrate orthologs of dpp, BMP-2 and -4, are crucial for gastrulation and neural induction, and aberrant signaling by BMPs and other TGF-β family members results in developmental defects including holoprosencephaly (HPE). Interestingly, human TSG maps to the HPE4 locus on Chromosome 18p11.3, and our analysis places the gene within 5 Mbp of TG-interacting factor (TGIF). Received: 21 August 2000 / Accepted: 9 March 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号