Plasmonic nanoparticles (NPs) like silver (Ag) strongly absorb the incident light and produce enhanced localized electric field at the localized surface plasmon resonance (LSPR) frequency. Enormous theoretical and experimental research has focused on the plasmonic properties of the metallic nanoparticles with sizes greater than 10 nm. However, such studies on smaller sized NPs in the size range of 3 to 10 nm (quantum-sized regime) are sparse. In this size regime, the conduction band of the metal particles discretizes, thus altering plasmon properties of the NPs from classical to the quantum regime. In this study, plasmonic properties of the spherical Ag NPs in size range of 3 to 20 nm were investigated using both quantum and classical modeling to understand the importance of invoking quantum regime to accurately describing their properties in this size regime. Theoretical calculations using standard Mie theory were carried out to monitor the LSPR peak shift and electric field enhancement as a function of the size of the bare plasmonic nanoparticle and the refractive index (RI) of the surrounding medium. Comparisons were made with and without invoking quantum regime. Also, the optical properties of metallic NPs conjugated with a chemical ligand using multi-layered Mie theory were studied, and interesting trends were observed.
The highly homologous PE_PGRS (Proline-glutamic acid_polymorphic GC-rich repetitive sequence) genes are members of the PE multigene family which is found only in mycobacteria. PE genes are particularly abundant within the genomes of pathogenic mycobacteria where they seem to have expanded as a result of gene duplication events. PE_PGRS genes are characterized by their high GC content and extensive repetitive sequences, making them prone to recombination events and genetic variability.
Results
Comparative sequence analysis of Mycobacterium tuberculosis genes PE_PGRS17 (Rv0978c) and PE_PGRS18 (Rv0980c) revealed a striking genetic variation associated with this typical tandem duplicate. In comparison to the M. tuberculosis reference strain H37Rv, the variation (named the 12/40 polymorphism) consists of an in-frame 12-bp insertion invariably accompanied by a set of 40 single nucleotide polymorphisms (SNPs) that occurs either in PE_PGRS17 or in both genes. Sequence analysis of the paralogous genes in a representative set of worldwide distributed tubercle bacilli isolates revealed data which supported previously proposed evolutionary scenarios for the M. tuberculosis complex (MTBC) and confirmed the very ancient origin of " M. canettii " and other smooth tubercle bacilli. Strikingly, the identified polymorphism appears to be coincident with the emergence of the post-bottleneck successful clone from which the MTBC expanded. Furthermore, the findings provide direct and clear evidence for the natural occurrence of gene conversion in mycobacteria, which appears to be restricted to modern M. tuberculosis strains.
Conclusion
This study provides a new perspective to explore the molecular events that accompanied the evolution, clonal expansion, and recent diversification of tubercle bacilli. 相似文献
The proper choice of nonprecious transition metals as single atom catalysts (SACs) remains unclear for designing highly efficient electrocatalysts for hydrogen evolution reaction (HER). Herein, reported is an activity correlation with catalysts, electronic structure, in order to clarify the origin of reactivity for a series of transition metals supported on nitrogen‐doped graphene as SACs for HER by a combination of density functional theory calculations and electrochemical measurements. Only few of the transition metals (e.g., Co, Cr, Fe, Rh, and V) as SACs show good catalytic activity toward HER as their Gibbs free energies are varied between the range of –0.20 to 0.30 eV but among which Co‐SAC exhibits the highest electrochemical activity at 0.13 eV. Electronic structure studies show that the energy states of active valence dz2 orbitals and their resulting antibonding state determine the catalytic activity for HER. The fact that the antibonding state orbital is neither completely empty nor fully filled in the case of Co‐SAC is the main reason for its ideal hydrogen adsorption energy. Moreover, the electrochemical measurement shows that Co‐SAC exhibits a superior hydrogen evolution activity over Ni‐SAC and W‐SAC, confirming the theoretical calculation. This systematic study gives a fundamental understanding about the design of highly efficient SACs for HER. 相似文献
Galectins are a family of β-galactose-specific binding proteins residing within the cytosol or nucleus, with a highly conserved carbohydrate recognition domain across many species. Accumulating evidence shows that Galectin 1 (Gal-1) plays an essential role in cancer, and its expression correlates with tumor aggressiveness and progression. Our preliminary data showed Gal-1 promotes glioma stem cell (GSC) growth via increased Warburg effect. mRNA expression and clinical data were obtained from The Cancer Genome Atlas database. The immunoblot analysis conducted using our cohort of human glioblastoma patient specimens (hGBM), confirmed Gal-1 upregulation in GBM. GC/MS analysis to evaluate the effects of Gal-1 depletion showed elevated levels of α-ketoglutaric acid, and citric acid with a concomitant reduction in lactic acid levels. Using Biolog microplate-1 mitochondrial functional assay, we confirmed that the depletion of Gal-1 increases the expression levels of the enzymes from the TCA cycle, suggesting a reversal of the Warburg phenotype. Manipulation of Gal-1 using RNA interference showed reduced ATP, lactate levels, cell viability, colony-forming abilities, and increased expression levels of genes implicated in the induction of apoptosis. Gal-1 exerts its metabolic role via regulating the expression of carbonic anhydrase IX (CA-IX), a surrogate marker for hypoxia. CA-IX functions downstream to Gal-1, and co-immunoprecipitation experiments along with proximity ligation assays confirm that Gal-1 physically associates with CA-IX to regulate its expression. Further, silencing of Gal-1 in mice models showed reduced tumor burden and increased survival compared to the mice implanted with GSC controls. Further investigation of Gal-1 in GSC progression and metabolic reprogramming is warranted.Subject terms: Cancer metabolism, Cell signalling相似文献
Osteoporosis is a silent disease, characterized by a porous bone micro-structure that enhances risk for fractures and associated disabilities. Senile, or age-related osteoporosis (SO), affects both men and women, resulting in increased morbidity and mortality. However, cellular and molecular mechanisms underlying senile osteoporosis are not fully known. Recent studies implicate the accumulation of reactive oxygen species (ROS) and increased oxidative stress as key factors in SO. Herein, we show that loss of caspase-2, a cysteine aspartate protease involved in oxidative stress-induced apoptosis, results in total body and femoral bone loss in aged mice (20% decrease in bone mineral density), and an increase in bone fragility (30% decrease in fracture strength). Importantly, we demonstrate that genetic ablation or selective inhibition of caspase-2 using zVDVAD-fmk results in increased numbers of bone-resorbing osteoclasts and enhanced tartrate-resistant acid phosphatase (TRAP) activity. Conversely, transfection of osteoclast precursors with wild type caspase-2 but not an enzymatic mutant, results in a decrease in TRAP activity. We demonstrate that caspase-2 expression is induced in osteoclasts treated with oxidants such as hydrogen peroxide and that loss of caspase-2 enhances resistance to oxidants, as measured by TRAP activity, and decreases oxidative stress-induced apoptosis of osteoclasts. Moreover, oxidative stress, quantified by assessment of the lipid peroxidation marker, 4-HNE, is increased in Casp2-/- bone, perhaps due to a decrease in antioxidant enzymes such as SOD2. Taken together, our data point to a critical and novel role for caspase-2 in maintaining bone homeostasis by modulating ROS levels and osteoclast apoptosis during conditions of enhanced oxidative stress that occur during aging. 相似文献
We have used a bioinformatics approach for the identification and reconstruction of metabolic pathways associated with amino acid metabolism in human mitochon- dria. Human mitochondrial proteins determined by experimental and computa- tional methods have been superposed on the reference pathways from the KEGG database to identify mitochondrial pathways. Enzymes at the entry and exit points for each reconstructed pathway were identified, and mitochondrial solute carrier proteins were determined where applicable. Intermediate enzymes in the mito- chondrial pathways were identified based on the annotations available from public databases, evidence in current literature, or our MITOPRED program, which pre- dicts the mitochondrial localization of proteins. Through integration of the data derived from experimental, bibliographical, and computational sources, we recon- structed the amino acid metabolic pathways in human mitochondria, which could help better understand the mitochondrial metabolism and its role in human health. 相似文献
Breast cancers exhibit highly heterogeneous molecular profiles. Although gene expression profiles have been used to predict the risks and prognostic outcomes of breast cancers, the high variability of gene expression limits its clinical application. In contrast, genetic mutation profiles would be more advantageous than gene expression profiles because genetic mutations can be stably detected and the mutational heterogeneity widely exists in breast cancer genomes. We analyzed 98 breast cancer whole exome samples that were sorted into three subtypes, two grades and two stages. The sum deleterious effect of all mutations in each gene was scored to identify differentially mutated genes (DMGs) for this case-control study. DMGs were corroborated using extensive published knowledge. Functional consequences of deleterious SNVs on protein structure and function were also investigated. Genes such as ERBB2, ESP8, PPP2R4, KIAA0922, SP4, CENPJ, PRCP and SELP that have been experimentally or clinically verified to be tightly associated with breast cancer prognosis are among the DMGs identified in this study. We also identified some genes such as ARL6IP5, RAET1E, and ANO7 that could be crucial for breast cancer development and prognosis. Further, SNVs such as rs1058808, rs2480452, rs61751507, rs79167802, rs11540666, and rs2229437 that potentially influence protein functions are observed at significantly different frequencies in different comparison groups. Protein structure modeling revealed that many non-synonymous SNVs have a deleterious effect on protein stability, structure and function. Mutational profiling at gene- and SNV-level revealed differential patterns within each breast cancer comparison group, and the gene signatures correlate with expected prognostic characteristics of breast cancer classes. Some of the genes and SNVs identified in this study show high promise and are worthy of further investigation by experimental studies. 相似文献
BackgroundDespite ACC/AHA guidelines indicating implantable cardioverter defibrillator (ICD) as class I therapy for primary prevention of sudden cardiac death in patients with EF≤35%, ICD utilization rates in real world practice have been low.ObjectiveTo determine the rate of ICD implantation at a tertiary care academic center and to assess the reasons for under-utilization of the same.MethodsReview of a prospectively collected database which included all patients diagnosed with an EF≤35% was performed to assess the rate of ICD implantation and mortality. Reasons for non-implantation of ICD were then assessed from detailed chart review.ResultsA total of 707 patients (age 69.4 ± 14.1 years) with mean EF of 26±7% were analyzed. Only 28% (200/707) of patients had ICDs implanted. Mortality was lower in the group with ICD (25% vs 37%, p=0.004). When patients who either died or were lost to follow-up prior to 2005 were excluded, ICD utilization rate was still low at 37.6%. The most common reason for non-implantation of ICD was physicians not discussing this option with their patients. Patient refusal was the second most common reason.ConclusionsICD Implantation rates for primary prevention of SCD in patients with EF≤35% is low. Physician and patient education should be addressed to improve the utilization rates.Key words: Implantable cardioverter-defibrillator, Outcomes, sudden cardiac death相似文献
Most studies evidenced that the Ras/Raf/MEK/ERK signaling pathway promotes proliferation and malignant transformation as a result of stimulation of cell growth and division and apoptosis prevention. The PI3K/PDK/Akt signaling pathway is involved in regulation of protein synthesis and supplying cells with energy. In addition, this pathway inhibits apoptosis, promotes cancer cell survival, and is activated in many types of tumors. However, hyperactivity of these pathways in tumor tissues can lead to oncogene induced senescence(OIS), growth arrest, and apoptosis. This phenomenon was named Toxicity of Oncogenes. The review discusses the meaning and mechanisms of oncogenic toxicity in thyroid tumors and other types of cancer. 相似文献