首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1536篇
  免费   145篇
  2024年   1篇
  2023年   12篇
  2022年   42篇
  2021年   81篇
  2020年   50篇
  2019年   66篇
  2018年   69篇
  2017年   50篇
  2016年   74篇
  2015年   116篇
  2014年   114篇
  2013年   123篇
  2012年   138篇
  2011年   135篇
  2010年   73篇
  2009年   55篇
  2008年   91篇
  2007年   75篇
  2006年   50篇
  2005年   52篇
  2004年   50篇
  2003年   38篇
  2002年   36篇
  2001年   6篇
  2000年   3篇
  1999年   4篇
  1998年   11篇
  1997年   6篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1977年   2篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
排序方式: 共有1681条查询结果,搜索用时 593 毫秒
151.
Six loci containing genes involved in the dioxin metabolism (ARNT, AHR, CYP1A1, CYP1A2, CYP1B1 and AHRR) were assigned, for the first time, to cattle (Bos taurus, 2n = 60, BTA), river buffalo (Bubalus bubalis, 2n = 50, BBU), sheep (Ovis aries, 2n = 54, OAR) and goat (Capra hircus, 2n = 60, CHI) chromosomes by comparative FISH-mapping and R-banding using bovine BAC-clones. The following chromosome locations were found: ARNT to BTA3q21, BBU6q21, OAR1p21 and CHI3q21, AHR to BTA4q15, BBU8q15, OAR4q15 and CHI4q15; CYP1A1 and CYP1A2 to BTA21q17, BBU20q17, OAR18q17 and CHI21q17; CYP1B1 to BTA11q16, BBU12q22, OAR3p16 and CHI11q16, AHRR to BTA20q24, BBU19q24, OAR16q24 and CHI20q24. All loci were mapped at the same homoeologous chromosomes and chromosome bands of the four bovid species. Comparisons with corresponding human locations were also reported.  相似文献   
152.
Neisseria meningitidis infection still remains a major life-threatening bacterial disease worldwide. The availability of bacterial genomic sequences generated a paradigm shift in microbiological and vaccines sciences, and post-genomics (comparative genomics, functional genomics, proteomics and a combination/evolution of these techniques) played important roles in elucidating bacterial biological complexity and pathogenic traits, at the same time accelerating the development of therapeutic drugs and vaccines. This article summarizes the most recent technological and scientific advances in meningococcal biology and pathogenesis aimed at the development and characterization of vaccines against the pathogenic meningococci.  相似文献   
153.
To investigate the phosphorylation capability of serogroup A Neisseria meningitidis (MenA) and to implement our knowledge in meningococcal biology and in bacterial post-translational modifications, cell extracts were separated by 2-DE and 51 novel phosphoproteins were revealed by the use of the highly specific Ser/Thr/Tyr-phosphorylated proteins staining by Pro-Q Diamond and identified by MALDI-ToF/MS. Our results indicate that phosphorylation in MenA is comparable to that of other bacterial species. A first functional characterization of the identified modified proteins was also given, in order to understand their role in meningococcal physiopathology.  相似文献   
154.

Background

Highly Expressed in Cancer protein 1 (Hec1) is a constituent of the Ndc80 complex, a kinetochore component that has been shown to have a fundamental role in stable kinetochore-microtubule attachment, chromosome alignment and spindle checkpoint activation at mitosis. HEC1 RNA is found up-regulated in several cancer cells, suggesting a role for HEC1 deregulation in cancer. In light of this, we have investigated the consequences of experimentally-driven Hec1 expression on mitosis and chromosome segregation in an inducible expression system from human cells.

Methodology/Principal Findings

Overexpression of Hec1 could never be obtained in HeLa clones inducibly expressing C-terminally tagged Hec1 or untagged Hec1, suggesting that Hec1 cellular levels are tightly controlled. On the contrary, a chimeric protein with an EGFP tag fused to the Hec1 N-terminus accumulated in cells and disrupted mitotic division. EGFP- Hec1 cells underwent altered chromosome segregation within multipolar spindles that originated from centriole splitting. We found that EGFP-Hec1 assembled a mutant Ndc80 complex that was unable to rescue the mitotic phenotypes of Hec1 depletion. Kinetochores harboring EGFP-Hec1 formed persisting lateral microtubule-kinetochore interactions that recruited the plus-end depolymerase MCAK and the microtubule stabilizing protein HURP on K-fibers. In these conditions the plus-end kinesin CENP-E was preferentially retained at kinetochores. RNAi-mediated CENP-E depletion further demonstrated that CENP-E function was required for multipolar spindle formation in EGFP-Hec1 expressing cells.

Conclusions/Significance

Our study suggests that modifications on Hec1 N-terminal tail can alter kinetochore-microtubule attachment stability and influence Ndc80 complex function independently from the intracellular levels of the protein. N-terminally modified Hec1 promotes spindle pole fragmentation by CENP-E-mediated plus-end directed kinetochore pulling forces that disrupt the fine balance of kinetochore- and centrosome-associated forces regulating spindle bipolarity. Overall, our findings support a model in which centrosome integrity is influenced by the pathways regulating kinetochore-microtubule attachment stability.  相似文献   
155.
The deafness locus DFNB1 contains GJB2, the gene encoding connexin26 and GJB6, encoding connexin30, which appear to be coordinately regulated in the inner ear. In this work, we investigated the expression and function of connexin26 and connexin30 from postnatal day 5 to adult age in double transgenic Cx26(Sox10Cre) mice, which we obtained by crossing connexin26 floxed mice with a deleter Sox10-Cre line. Cx26(Sox10Cre) mice presented with complete connexin26 ablation in the epithelial gap junction network of the cochlea, whereas connexin30 expression was developmentally delayed; immunolabeling patterns for both connexins were normal in the cochlear lateral wall. In vivo electrophysiological measurements in Cx26(Sox10Cre) mice revealed profound hearing loss accompanied by reduction of endocochlear potential, and functional experiments performed in postnatal cochlear organotypic cultures showed impaired gap junction coupling. Transduction of these cultures with a bovine adeno associated virus vector restored connexin26 protein expression and rescued gap junction coupling. These results suggest that restoration of normal connexin levels by gene delivery via recombinant adeno associated virus could be a way to rescue hearing function in DFNB1 mouse models and, in future, lead to the development of therapeutic interventions in humans.  相似文献   
156.
We studied the mechanical properties of living starfish oocytes belonging to two species, Astropecten Auranciacus and Asterina pectinifera, over a wide range of timescales. We monitored the Brownian motion of microspheres injected in the cytoplasm using laser particle‐tracking (LPT) and video multiple‐particle‐tracking (MPT) techniques, to explore high‐ and low‐frequency response ranges, respectively. The analysis of the mean‐square‐displacements (MSD) allowed us to characterize the samples on different timescales. The MSD behavior is explained by three power‐law exponents: for short times (τ < 1 ms) it reflects the semiflexible behavior of the actin network; for intermediate timescales (1 ms < τ < 1 s) it is similar to that of a soft‐glass material; finally for long times (τ > 1 s) it behaves mainly like a viscous medium. We computed and compared the viscoelastic moduli using a recently proposed model describing the frequency response of the cell material. The large fluctuations found in the MSD over hundreds of trajectories indicate and confirm the significant cytoplasm heterogeneity. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
157.
In this work, proteomics was used to study the influence of both optimal and low temperatures on growth and development in a vernalization-requiring winter wheat (Triticum aestivum L. cv Cheyenne) after prolonged times of treatment. For this purpose, plants were grown at optimal temperature (20°C) for 14 days (zero point) after which half were transferred to conditioned chambers kept at 4°C for a period of 63 days. Cold tolerance, as estimated from lethal temperatures (LT(50)), and phenological development, as measured by final leaf number (FLN) and shoot apex dissection, were determined. Proteomic analysis indicated a down-accumulation of several photosynthesis-related proteins and a concomitant increase in abundance of some Calvin cycle enzymes. A cold-induced accretion of soluble sugars and proline was observed as well. In parallel, an increase of proteolysis accomplished by an up-modulation of TCA cycle enzymes was also noticed, probably suggesting an efficient recycling of amino acids as energy source. Proteomic analysis of plants grown at optimal temperature allowed to specifically discriminate cold-induced proteins and highlight molecular processes driven by vernalization. Among identified proteins typically involved in vernalization responses and floral transition we observed a marked increase of wrab17, wcor18 and glycine-rich RNA-binding proteins.  相似文献   
158.
159.

Background

Assisted reproductive technologies allow to utilize a limited number of fully grown oocytes despite the presence in the ovary of a large pool of meiotically incompetent gametes potentially able to produce live births. In vitro folliculogenesis could be useful to recruit these oocytes by promoting their growth and differentiation.

Methodology/Principal Findings

In vitro folliculogenesis was performed starting from sheep preantral (PA) follicles to evaluate oocyte nuclear/epigenetic maturation. Chromatin configuration, quantification of global DNA methylation, and epigenetic remodelling enzymes were evaluated with immunocytochemistry, telomere elongation was assessed with the Q-FISH technique, while the DNA methylation status at the DMRs of maternally IGF2R and BEGAIN, and paternally H19 methylated imprinted genes was determined by bisulfite sequencing and COBRA. Specifically, 70% of PA underwent early antrum (EA) differentiation and supported in culture oocyte global DNA methylation, telomere elongation, TERT and Dnmt3a redistribution thus mimicking the physiological events that involve the oocyte during the transition from secondary to tertiary follicle. Dnmt1 anticipated cytoplasmic translocation in in vitro grown oocytes did not impair global and single gene DNA methylation. Indeed, the in vitro grown oocytes acquired a methylation profile of IGF2R and BEGAIN compatible with the follicle/oocyte stage reached, and maintained an unmethylated status of H19. In addition, the percentage of oocytes displaying a condensed chromatin configuration resulted lower in in vitro grown oocytes, however, their ability to undergo meiosis and early embryo development after IVF and parthenogenetic activation was similar to that recorded in EA follicle in vivo grown oocytes.

Conclusions/Significance

In conclusion, the in vitro folliculogenesis was able to support the intracellular/nuclear mechanisms leading the oocytes to acquire a meiotic and developmental competence. Thus, the in vitro culture may increase the availability of fertilizable oocytes in sheep, and become an in vitro translational model to investigate the mechanisms governing nuclear/epigenetic oocyte maturation.  相似文献   
160.

Aims

Atrial Natriuretic Peptide (ANP)-containing amyloid is frequently found in the elderly heart. No data exist regarding ANP aggregation process and its link to pathologies. Our aims were: i) to experimentally prove the presumptive association of Congestive Heart Failure (CHF) and Isolated Atrial Amyloidosis (IAA); ii) to characterize ANP aggregation, thereby elucidating IAA implication in the CHF pathogenesis.

Methods and Results

A significant prevalence (85%) of IAA was immunohistochemically proven ex vivo in biopsies from CHF patients. We investigated in vitro (using Congo Red, Thioflavin T, SDS-PAGE, transmission electron microscopy, infrared spectroscopy) ANP fibrillogenesis, starting from α-ANP as well as the ability of dimeric β-ANP to promote amyloid formation. Different conditions were adopted, including those reproducing β-ANP prevalence in CHF. Our results defined the uncommon rapidity of α-ANP self-assembly at acidic pH supporting the hypothesis that such aggregates constitute the onset of a fibrillization process subsequently proceeding at physiological pH. Interestingly, CHF-like conditions induced the production of the most stable and time-resistant ANP fibrils suggesting that CHF affected people may be prone to develop IAA.

Conclusions

We established a link between IAA and CHF by ex vivo examination and assessed that β-ANP is, in vitro, the seed of ANP fibrils. Our results indicate that β-ANP plays a crucial role in ANP amyloid deposition under physiopathological CHF conditions. Overall, our findings indicate that early IAA-related ANP deposition may occur in CHF and suggest that these latter patients should be monitored for the development of cardiac amyloidosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号