首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11333篇
  免费   910篇
  国内免费   760篇
  13003篇
  2024年   20篇
  2023年   212篇
  2022年   395篇
  2021年   629篇
  2020年   395篇
  2019年   512篇
  2018年   535篇
  2017年   341篇
  2016年   508篇
  2015年   710篇
  2014年   791篇
  2013年   914篇
  2012年   1067篇
  2011年   928篇
  2010年   571篇
  2009年   495篇
  2008年   533篇
  2007年   492篇
  2006年   427篇
  2005年   361篇
  2004年   302篇
  2003年   225篇
  2002年   187篇
  2001年   202篇
  2000年   170篇
  1999年   174篇
  1998年   101篇
  1997年   123篇
  1996年   105篇
  1995年   87篇
  1994年   91篇
  1993年   48篇
  1992年   74篇
  1991年   55篇
  1990年   44篇
  1989年   46篇
  1988年   38篇
  1987年   27篇
  1986年   19篇
  1985年   22篇
  1984年   12篇
  1983年   9篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
Paek  Hyo-Jin  Luo  Zhao-Bo  Choe  Hak-Myong  Quan  Biao-Hu  Gao  Kai  Han  Sheng-Zhong  Li  Zhou-Yan  Kang  Jin-Dan  Yin  Xi-Jun 《Transgenic research》2021,30(5):663-674
Transgenic Research - Herein, we investigate the high incidence of umbilical hernia and tippy-toe standing and their underlying changes in gene expression and proliferation in myostatin knockout...  相似文献   
92.
93.
Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome.  相似文献   
94.
Activation of Raf-1 is a complex process in which phosphorylation of Ser(338)-Tyr(341) is a critical step. Previous studies have shown that Pak1/2 is implicated in both Ras-dependent and -independent activation of Raf-1 by phosphorylating Raf Ser(338). The present study explores the structural basis of Raf-1 phosphorylation by Pak1. We found that Pak directly associates with Raf-1 under both physiological and overexpressed conditions. The association is greatly stimulated by 4beta-12-O-tetradecanoylphorbol-13-acetate and nocodazole and by expression of the active mutants of Rac and Ras. The active forms of Pak generated by mutation of Thr(423) to Glu or truncation of the amino-terminal moiety exhibit a greater binding to Raf than the wild type, whereas the kinase-dead mutant Pak barely binds Raf. The extent of binding to Raf-1 is correlated with the ability of Pak to phosphorylate Raf and induce mitogen-activated protein kinase activation. Furthermore, the Raf-1 binding site is defined to the carboxyl terminus of the Pak catalytic domain. In addition, our results suggest that the amino-terminal regulatory region of Raf inhibits the interaction. Taken together, the results indicate that the interaction depends on the active conformations of Pak and Raf. They also argue that Pak1 is a physiological candidate for phosphorylation of Raf Ser(338) during the course of Raf activation.  相似文献   
95.
96.
Hepatitis C virus (HCV) is able to induce autophagy via endoplasmic reticulum (ER) stress, but the exact molecular signaling pathway is not well understood. We found that the activity of the mechanistic target of rapamycin complex 1 (MTORC1) was inhibited in Huh7 cells either harboring HCV-N (genotype 1b) full-genomic replicon or infected with JFH1 (genotype 2a) virus, which led to the activation of UNC-51-like kinase 1 (ULK1) and thus to autophagy. We then analyzed activity upstream of MTORC1, and found that both protein kinase, AMP-activated, α (PRKAA, including PRKAA1 and PRKAA2, also known as AMP-activated protein kinase, AMPKα) and AKT (refers to pan AKT, including three isoforms of AKT1-3, also known as protein kinase B, PKB) were inhibited by HCV infection. The inhibition of the AKT-TSC-MTORC1 pathway contributed to upregulating autophagy, but inhibition of PRKAA downregulated autophagy. The net effect on autophagy was from AKT, which overrode the inhibition effect from PRKAA. It was further found that HCV-induced ER stress was responsible for the inhibition of the AKT pathway. Metformin, a PRKAA agonist, inhibited HCV replication not only by activating PRKAA as previously reported, but also by activating AKT independently of the autophagy pathway. Taken together, our data suggested HCV inhibited the AKT-TSC-MTORC1 pathway via ER stress, resulting in autophagy, which may contribute to the establishment of the HCV-induced autophagy.  相似文献   
97.
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a zoonotic pathogen capable of causing severe respiratory disease in humans. Although dromedary camels are considered as a major reservoir host, the MERS-CoV infection dynamics in camels are not fully understood. Through surveillance in Pakistan, nasal (n = 776) and serum (n = 1050)samples were collected from camels between November 2015 and February 2018. Samples were collected from animal markets, free-roaming herds and abattoirs. An in-house ELISA was developed to detect IgG against MERS-CoV. A total of 794 camels were found seropositive for MERS-CoV. Prevalence increased with the age and the highest seroprevalence was recorded in camels aged [ 10 years (81.37%) followed by those aged 3.1–10 years (78.65%) and B 3 years (58.19%).Higher prevalence was observed in female (78.13%) as compared to male (70.70%). Of the camel nasal swabs, 22 were found to be positive by RT-qPCR though with high Ct values. Moreover, 2,409 human serum samples were also collected from four provinces of Pakistan during 2016–2017. Among the sampled population, 840 humans were camel herders.Although we found a high rate of MERS-CoV antibody positive dromedaries (75.62%) in Pakistan, no neutralizing antibodies were detected in humans with and without contact to camels.  相似文献   
98.
99.
Aging process in mammals is associated with a decline in amplitude and a long period of circadian behaviors which are regulated by a central circadian regulator in the suprachiasmatic nucleus (SCN) and local oscillators in peripheral tissues. It is unclear whether enhancing clock function can retard aging. Using fibroblasts expressing per2::lucSV and senescent cells, we revealed cycloastragenol (CAG), a natural aglycone derivative from astragaloside IV, as a clock amplitude enhancing small molecule. CAG could activate telomerase to antiaging, but no reports focused on its effects on circadian rhythm disorders in aging mice. Here we analyze the potential effects of CAG on d -galactose-induced aging mice on the circadian behavior and expression of clock genes. For this purpose, CAG (20 mg/kg orally), was administered daily to d -galactose (150 mg/kg, subcutaneous) mice model of aging for 6 weeks. An actogram analysis of free-running activity of these mice showed that CAG significantly enhances the locomotor activity. We further found that CAG increase expressions of per2 and bmal1 genes in liver and kidney of aging mouse. Furthermore, CAG enhanced clock protein BMAL1 and PER2 levels in aging mouse liver and SCN. Our results indicated that the CAG could restore the behavior of circadian rhythm in aging mice induced by d -galactose. These data of present study suggested that CAG could be used as a novel therapeutic strategy for the treatment of age-related circadian rhythm disruption.  相似文献   
100.
Transport of photoassimilates from leaf tissues (source regions) to the sink organs is essential for plant development. Here, we show that a phytohormone, the brassinosteroids (BRs) promotes pollen and seed development in rice by directly promoting expression of Carbon Starved Anther (CSA) which encodes a MYB domain protein. Over‐expression of the BR‐synthesis gene D11 or a BR‐signaling factor OsBZR1 results in higher sugar accumulation in developing anthers and seeds, as well as higher grain yield compared with control non‐transgenic plants. Conversely, knockdown of D11 or OsBZR1 expression causes defective pollen maturation and reduced seed size and weight, with less accumulation of starch in comparison with the control. Mechanically, OsBZR1 directly promotes CSA expression and CSA directly triggers expression of sugar partitioning and metabolic genes during pollen and seed development. These findings provide insight into how BRs enhance plant reproduction and grain yield in an important agricultural crop.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号