首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9348篇
  免费   712篇
  国内免费   1012篇
  11072篇
  2024年   24篇
  2023年   124篇
  2022年   314篇
  2021年   510篇
  2020年   389篇
  2019年   460篇
  2018年   380篇
  2017年   281篇
  2016年   414篇
  2015年   589篇
  2014年   706篇
  2013年   789篇
  2012年   898篇
  2011年   771篇
  2010年   497篇
  2009年   471篇
  2008年   539篇
  2007年   473篇
  2006年   388篇
  2005年   301篇
  2004年   300篇
  2003年   269篇
  2002年   213篇
  2001年   150篇
  2000年   128篇
  1999年   132篇
  1998年   82篇
  1997年   65篇
  1996年   54篇
  1995年   61篇
  1994年   64篇
  1993年   40篇
  1992年   36篇
  1991年   43篇
  1990年   32篇
  1989年   23篇
  1988年   11篇
  1987年   10篇
  1986年   12篇
  1985年   12篇
  1984年   4篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
重金属镉、锌在菹草叶细胞中的超微定位观察   总被引:19,自引:0,他引:19  
水环境污染中十分突出的是重金属的污染 ,主要来源为流入物、渗漏和大气沉降 (Larcher ,1995 )。由于重金属污染物不但不能被微生物所分解 ,而且能在生物体内富集 ,并通过水生食物链的生物放大作用而对高营养级的生物甚至人类造成危害 ,因此日益引起人们的特别关注。许多研究从超微结构损伤和生理生化的角度研究了重金属对植物的毒害机制。施国新等 (2 0 0 0 )观察了重金属汞、镉污染对水生植物黑藻叶细胞的超微结构损伤。彭鸣等 (1991)研究了重金属镉、铅诱导的玉米超微结构的变化。李荣春 (2 0 0 0 )研究了Cd、Pb及其复合污染…  相似文献   
92.
滞育和非滞育棉铃虫前胸腺的形态解剖学比较研究   总被引:4,自引:0,他引:4  
该文用解剖镜和电子显微镜对滞育和非滞育棉铃虫Helicoverpa armigera前胸腺的形态解剖结构进行了比较研究。结果发现滞育棉铃虫的前胸腺细胞及其细胞间隙相对较小,不易着色,细胞核规则,较小,细胞质中几乎见不到光滑内质网和粗面内质网,线粒体极少,这些观察到的现象充分说明滞育棉铃虫的前胸腺活性较低。  相似文献   
93.
Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and developmental status; however, the molecular mechanisms underlying the interactions between different genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F‐box of flowering 2) negatively regulates flowering. FOF2 encodes a putative F‐box protein that interacts specifically with ASK14, and its overexpression results in later flowering under both long‐day and short‐day photoperiods. Conversely, transgenic plants expressing the F‐box domain deletion mutant of FOF2 (FOF2ΔF), or double loss of function mutant of FOF2 and FOL1 (FOF2‐LIKE 1) present early flowering phenotypes. The late flowering phenotype of the FOF2 overexpression lines is suppressed by the flc‐3 loss‐of‐function mutation. Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark conditions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light conditions and the autonomous floral promotion pathway in Arabidopsis.  相似文献   
94.
Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life‐cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life‐cycle GHG emissions affect biofuels' attractiveness and eligibility under a number of renewable fuel policies in the USA and abroad. Modeling was used to refine the spatial resolution and depth extent of domestic estimates of SOC change for land (cropland, cropland pasture, grassland, and forest) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow) at the county level in the USA. Results show that in most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. SOC change results were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life‐cycle GHG emissions of corn and cellulosic ethanol. Total LUC GHG emissions (g CO2eq MJ?1) were 2.1–9.3 for corn‐, ?0.7 for corn stover‐, ?3.4 to 12.9 for switchgrass‐, and ?20.1 to ?6.2 for Miscanthus ethanol; these varied with SOC modeling assumptions applied. Extending the soil depth from 30 to 100 cm affected spatially explicit SOC change and overall LUC GHG emissions; however, the influence on LUC GHG emission estimates was less significant in corn and corn stover than cellulosic feedstocks. Total life‐cycle GHG emissions (g CO2eq MJ?1, 100 cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18–26 for switchgrass ethanol, and ?7 to ?0.6 for Miscanthus ethanol. The LUC GHG emissions associated with poplar‐ and willow‐derived ethanol may be higher than that for switchgrass ethanol due to lower biomass yield.  相似文献   
95.
有机酸在植物解铝毒中的作用及生理机制   总被引:11,自引:0,他引:11  
酸性土壤上铝毒是限制作物产量的一个重要障碍因子,具有螯合能力的有机酸在植物铝的外部排斥机制和内部耐受机制均具有重要作用,在铝的外部排斥解毒过程中,植物通过根系分泌有机酸进入根际,如柠檬酸,草酸,苹果酸等与铝形成稳定的复合体,阻止铝进入共质体,从而达到植物体外解除铝毒害效应的目的,且分泌的有机酸对铝的胁迫诱导表现出高度的专一性,分泌的关键点位于根尖,不同的物种间分泌的有机酸种类,分泌的模式及生理机理存在差异,在铝积累型植物的内部解毒过程中,有机酸与铝形成稳定的化合物,降低植物体内铝离子的生理活性,从而降低细胞内铝离子的毒害效应,如绣球花中铝与柠檬酸形成1:1的复合体,荞麦内铝与草酸形成1:3的复合体,本文就有机酸在植物忍耐和积累铝中的作用及生理机制作一简要综述。  相似文献   
96.
Increasing evidence indicates that the Eph receptors and their ephrin ligands are involved in the regulation of interactions between neurons and astrocytes. Moreover, astrocytic ephrin‐A3 reverse signaling mediated by EphA4 receptors is necessary for controlling the abundance of glial glutamate transporters. However, the role of ephrin‐A3 reverse signaling in astrocytic function and neuronal death under ischemic conditions remains unclear. In the present study, we found that the EphA4 receptor and its ephrin‐A3 ligand, which were distributed in neurons and astrocytes, respectively, in the hippocampus showed a coincident up‐regulation of protein expression in the early stage of ischemia. Application of clustered EphA4 decreased the expressions of astrocytic glutamate transporters together with astrocytic glutamate uptake capacity through activating ephrin‐A3 reverse signaling. In consequence, neuronal loss was aggravated in the CA1 region of the hippocampus accompanied by impaired hippocampus‐dependent spatial memory when clustered EphA4 treatment was administered prior to transient global ischemia. These findings indicate that EphA4‐mediated ephrin‐A3 reverse signaling is a crucial mechanism for astrocytes to control glial glutamate transporters and prevent glutamate excitotoxicity under pathological conditions.

  相似文献   

97.
Conversion of 3-hydroxypropionate (3HP) from 1,3-propanediol (PDO) was improved by expressing dehydratase gene (dhaT) and aldehyde dehydrogenase gene (aldD) of Pseudomonas putida KT2442 under the promoter of phaCAB operon from Ralstonia eutropha H16. Expression of these genes in Aeromonas hydrophila 4AK4 produced up to 21 g/L 3HP in a fermentation process. To synthesize homopolymer poly(3-hydroxypropionate) (P3HP), and copolymer poly(3-hydroxypropionate-co-3-hydroxybutyrate) (P3HP4HB), dhaT and aldD were expressed in E. coli together with the phaC1 gene encoding polyhydroxyalkanoate (PHA) synthase gene of Ralstonia eutropha, and pcs' gene encoding the ACS domain of the tri-functional propionyl-CoA ligase (PCS) of Chloroflexus aurantiacus. Up to 92 wt% P3HP and 42 wt% P3HP4HB were produced by the recombinant Escherichia coli grown on PDO and a mixture of PDO+1,4-butanediol (BD), respectively.  相似文献   
98.
In the present study, the endophytic bacterium Bacillus subtilis strain Em7 (GU258545.1) was evaluated as a biological control agent for Sclerotinia sclerotiorum on oilseed rape. In petri dish, strain Em7 not only strongly inhibited pathogen mycelium growth but also germination of sclerotia at concentrations between 109 and 1011 colony forming unit (CFU)·ml?1. Scanning electron microscopy and transmission electron microscopy studies revealed that in the presence of strain Em7, hyphae of S. sclerotiorum showed leakage and disintegration of hyphal cytoplasm. Furthermore, the strain Em7 showed a broad antifungal spectrum on mycelium growth of numerous important plant pathogenic fungi. Light microscopic observations revealed that strain Em7 caused morphological alterations including increased branching, swelling and collapse of cytoplasm. In the greenhouse, spray treatments of cell suspensions of strain Em7 (1×109 CFU·ml?1) reduced leaf and stem rot incidence and severity in the seedling and blossom stage. The control efficacy was higher when strain Em7 cell suspension was applied one day prior to inoculation of the pathogen than after inoculation. Three-year field trials showed that two applications of strain Em7 cell suspension at blossom stage significantly reduced disease incidence and severity by 50–70%. There was no significant difference in control efficacy among treatments with strain Em7 cell suspension and the fungicides containing carbendazim or tebuconazole (P = 0.05). Thus, our results strongly suggest that B. subtilis strain Em7 is a promising biological control agent for control of oilseed rape Sclerotinia stem rot.  相似文献   
99.
The effect of livestock grazing on grassland degradation and the resulting impact on soil carbon concentration is an important factor in carbon estimation. We addressed this issue using field observations and laboratory analysis of samples from Tibetan grassland. Based on the field measurements, we investigated the soil organic carbon (SOC) and soil inorganic carbon (SIC) under two contrasting degradation states: lightly or non-degraded grasslands (LDG) and heavily degraded grasslands (HDG). We assessed their relationships with environmental factors using data collected from 99 sites across Northern Tibet during 2011–2012. Data were analyzed using a linear mixed-effects model and one-way ANOVA. The results showed that: (1) SOC concentration decreased and SIC concentration increased following grassland degradation, especially at soil depths in the range of 0–10 cm (P < 0.05); (2) the major environmental factors affecting SOC and SIC were soil pH and plant biomass; (3) spatially, the SOC density increased with the mean annual temperature and mean annual precipitation, whereas SIC exhibited the opposite trend; (4) the SOC density increased at first and then decreased with increasing grazing intensity, with an opposite trend in SIC; and (5) soil carbon storage in this region was 0.14 Pg smaller in the HDG than in the LDG. This study suggests that grassland degradation can significantly affect the vertical distribution and storage of SOC and SIC. The carbon sequestration capacity of the top 100 cm of soil in Northern Tibet was estimated as 0.14 Pg.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号