首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112781篇
  免费   145995篇
  国内免费   32266篇
  2021年   2578篇
  2019年   4452篇
  2018年   4017篇
  2017年   3260篇
  2016年   3977篇
  2015年   5222篇
  2014年   5743篇
  2013年   5944篇
  2012年   7044篇
  2011年   7201篇
  2010年   6944篇
  2009年   11676篇
  2008年   6300篇
  2007年   5985篇
  2006年   4742篇
  2005年   4470篇
  2004年   4199篇
  2003年   3549篇
  2002年   4109篇
  2001年   5098篇
  2000年   2752篇
  1999年   7395篇
  1998年   9233篇
  1997年   9388篇
  1996年   8737篇
  1995年   8972篇
  1994年   8396篇
  1993年   7965篇
  1992年   8057篇
  1991年   8070篇
  1990年   8831篇
  1989年   8070篇
  1988年   7308篇
  1987年   6392篇
  1986年   5899篇
  1985年   5311篇
  1984年   4154篇
  1983年   3327篇
  1982年   3628篇
  1981年   3261篇
  1980年   3188篇
  1979年   3314篇
  1978年   3020篇
  1977年   2943篇
  1976年   2776篇
  1974年   2524篇
  1973年   2508篇
  1972年   2860篇
  1971年   2621篇
  1969年   2415篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
The objective of the study was to evaluate the use of targeted multiplex Nanopore MinION amplicon re-sequencing of key Candida spp. from blood culture bottles to identify azole and echinocandin resistance associated SNPs. Targeted PCR amplification of azole (ERG11 and ERG3) and echinocandin (FKS) resistance-associated loci was performed on positive blood culture media. Sequencing was performed using MinION nanopore device with R9.4.1 Flow Cells. Twenty-eight spiked blood cultures (ATCC strains and clinical isolates) and 12 prospectively collected positive blood cultures with candidaemia were included. Isolate species included Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis, Candida tropicalis and Candida auris. SNPs that were identified on ERG and FKS genes using Snippy tool and CLC Genomic Workbench were correlated with phenotypic testing by broth microdilution (YeastOne™ Sensititre). Illumina whole-genome-sequencing and Sanger-sequencing were also performed as confirmatory testing of the mutations identified from nanopore sequencing data. There was a perfect agreement of the resistance-associated mutations detected by MinION-nanopore-sequencing compared to phenotypic testing for acquired resistance (16 with azole resistance; 3 with echinocandin resistance), and perfect concordance of the nanopore sequence mutations to Illumina and Sanger data. Mutations with no known association with phenotypic drug resistance and novel mutations were also detected.  相似文献   
152.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
153.
A new mutation, mpo, which affects the synthesis of some membrane proteins and sporulation in Bacillus subtilis was identified. The mpo mutation was tightly linked to the overproduction of membrane proteins MP32 and MP18 (molecular weights of 32,000 and 18,000, respectively) and the temperature-sensitive sporulation phenotype. Genetic analysis showed that the mpo mutation maps between the spoIIIB and lys loci.  相似文献   
154.
155.
156.
Molecular dynamics (MD) simulations of phosphatidylinositol (4,5)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) bilayers indicate that the inositol rings are tilted ∼40° with respect to the bilayer surface, as compared with 17° for the P-N vector of POPC. Multiple minima were obtained for the ring twist (analogous to roll for an airplane). The phosphates at position 1 of PIP2 and PIP3 are within an Ångström of the plane formed by the phosphates of POPC; lipids in the surrounding shell are depressed by 0.5-0.8 Å, but otherwise the phosphoinositides do not substantially perturb the bilayer. Finite size artifacts for ion distributions are apparent for systems of ∼26 waters/lipid, but, based on simulations with a fourfold increase of the aqueous phase, the phosphoinositide positions and orientations do not show significant size effects. Electrostatic potentials evaluated from Poisson-Boltzmann (PB) calculations show a strong dependence of potential height and ring orientation, with the maxima on the −25 mV surfaces (17.1 ± 0.1 Å for PIP2 and 19.4 ± 0.3 Å for PIP3) occurring near the most populated orientations from MD. These surfaces are well above the background height of 10 Å estimated for negatively charged cell membranes, as would be expected for lipids involved in cellular signaling. PB calculations on microscopically flat bilayers yield similar maxima as the MD-based (microscopically rough) systems, but show less fine structure and do not clearly indicate the most probable regions. Electrostatic free energies of interaction with pentalysine are also similar for the rough and flat systems. These results support the utility of a rigid/flat bilayer model for PB-based studies of PIP2 and PIP3 as long as the orientations are judiciously chosen.  相似文献   
157.
158.
The results of recent randomized trials to test the influence of antioxidants on coronary-event rates and prognosis in patients with coronary-artery disease were disappointing. In none of these studies did the use of vitamin E improve prognosis. In contrast, treatment of coronary-artery disease with angiotensin-converting-enzyme (ACE) inhibitors reduced coronary-event rates and improved prognosis. ACE inhibition prevents the formation of angiotensin II, which has been shown to be a potent stimulus of superoxide-producing enzymes in atherosclerosis. The findings suggest that inhibition of superoxide production at enzymatic levels, rather than symptomatic superoxide scavenging, may be the better choice of treatment.  相似文献   
159.
The gene encoding muscle tropomyosin I in Drosophila is alternatively spliced in embryonic and thoracic muscle to generate two sizes classes of RNAs. By Northern blot analysis, the embryonic RNA class shows a broad RNA band of hybridization of 1.3 kb and a more sharply defined, less abundant RNA band at 1.6 kb. The thoracic class of RNAs, on the other hand, consists of a broad hybridization band at 1.7 kb and a more sharply defined band at 1.9 kb. Each size class of RNA encodes a different tropomyosin isoform. The two classes of alternatively spliced RNAs utilize the same 3' terminal exon of the gene. The DNA sequence of this exon reveals a cluster of several polyadenylation signals (AAUAAA) or polyadenylation-like signals. We show here by S1 nuclease protection analysis that at least five and possibly seven of these polyadenylation or polyadenylation-like sequences are associated with in vivo embryonic and thoracic mRNA cleavage processing sites. Six of these S1 sites are clustered within 119 bp and a seventh is located 255 bp downstream. At least one of the polyadenylation-like signal sequences appears to be an unusual AACAAA sequence. In addition we also show that these mRNAs function in vitro to synthesize muscle tropomyosins.  相似文献   
160.
Polyamine biosynthesis in intact cells can be exquisitely controlled with exogenous polyamines through the regulation of rate-limiting biosynthetic enzymes, particularly ornithine decarboxylase (ODC). In an attempt to exploit this phenomenon as an antiproliferative strategy, certain polyamine analogues have been identified [Porter, Cavanaugh, Stolowich, Ganis, Kelly & Bergeron (1985) Cancer Res. 45, 2050-2057] which lower ODC activity in intact cells, have no direct inhibitory effects on ODC, are incapable of substituting for spermidine (SPD) in supporting cell growth, and are growth-inhibitory at micromolar concentrations. In the present study, the most effective of these analogues, N1N8-bis(ethyl)SPD (BES), is compared with SPD in its ability to regulate ODC activity in intact L1210 cells and in the mechanism(s) by which this is accomplished. With respect to time and dose-dependence of ODC suppression, both polyamines closely paralleled one another in their response curves, although BES was slightly less effective than SPD. Conditions of minimal treatment leading to near-maximal ODC suppression (70-80%) were determined and found to be 3 microM for 2 h with either SPD or BES. After such treatment, ODC activity was fully recovered within 2-4 h when cells were re-seeded in drug-free media. By assessing BES or [3H]SPD concentrations in treated and recovered cells, it was possible to deduce that an intracellular accumulation of BES or SPD equivalent to less than 6.5% of the combined cellular polyamine pool was sufficient to invoke ODC regulatory mechanisms. Decreases in ODC activity after BES or SPD treatment were closely paralleled by concomitant decreases in ODC protein. Since cellular ODC mRNA was not similarly decreased by either BES or SPD, it was concluded that translational and/or post-translational mechanisms, such as increased degradation of ODC protein or decreased translation of ODC mRNA, were probably responsible for regulation of enzyme activity. Experimental evidence indicated that neither of these mechanisms seemed to be mediated by cyclic AMP or ODC-antizyme induction. On the basis of the consistent similarities between BES and SPD in all parameters studied, it is concluded that the analogue most probably acts by the same mechanisms as SPD in regulating polyamine biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号