首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9199篇
  免费   612篇
  国内免费   631篇
  10442篇
  2024年   23篇
  2023年   98篇
  2022年   241篇
  2021年   436篇
  2020年   304篇
  2019年   373篇
  2018年   361篇
  2017年   273篇
  2016年   346篇
  2015年   558篇
  2014年   660篇
  2013年   725篇
  2012年   810篇
  2011年   761篇
  2010年   443篇
  2009年   416篇
  2008年   468篇
  2007年   399篇
  2006年   363篇
  2005年   304篇
  2004年   258篇
  2003年   233篇
  2002年   187篇
  2001年   177篇
  2000年   152篇
  1999年   141篇
  1998年   104篇
  1997年   95篇
  1996年   83篇
  1995年   72篇
  1994年   83篇
  1993年   67篇
  1992年   71篇
  1991年   66篇
  1990年   66篇
  1989年   51篇
  1988年   32篇
  1987年   35篇
  1986年   22篇
  1985年   27篇
  1984年   10篇
  1983年   16篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1972年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Chou WC  Wang HC  Wong FH  Ding SL  Wu PE  Shieh SY  Shen CY 《The EMBO journal》2008,27(23):3140-3150
The DNA damage response (DDR) has an essential function in maintaining genomic stability. Ataxia telangiectasia-mutated (ATM)-checkpoint kinase 2 (Chk2) and ATM- and Rad3-related (ATR)-Chk1, triggered, respectively, by DNA double-strand breaks and blocked replication forks, are two major DDRs processing structurally complicated DNA damage. In contrast, damage repaired by base excision repair (BER) is structurally simple, but whether, and how, the DDR is involved in repairing this damage is unclear. Here, we demonstrated that ATM-Chk2 was activated in the early response to oxidative and alkylation damage, known to be repaired by BER. Furthermore, Chk2 formed a complex with XRCC1, the BER scaffold protein, and phosphorylated XRCC1 in vivo and in vitro at Thr(284). A mutated XRCC1 lacking Thr(284) phosphorylation was linked to increased accumulation of unrepaired BER intermediate, reduced DNA repair capacity, and higher sensitivity to alkylation damage. In addition, a phosphorylation-mimic form of XRCC1 showed increased interaction with glycosylases, but not other BER proteins. Our results are consistent with the phosphorylation of XRCC1 by ATM-Chk2 facilitating recruitment of downstream BER proteins to the initial damage recognition/excision step to promote BER.  相似文献   
992.
We report a preliminary demonstration of the accurate mass and time (AMT) tag approach for lipidomics. Initial data-dependent LC-MS/MS analyses of human plasma, erythrocyte, and lymphocyte lipids were performed in order to identify lipid molecular species in conjunction with complementary accurate mass and isotopic distribution information. Identified lipids were used to populate initial lipid AMT tag databases containing 250 and 45 entries for those species detected in positive and negative electrospray ionization (ESI) modes, respectively. The positive ESI database was then utilized to identify human plasma, erythrocyte, and lymphocyte lipids in high-throughput LC-MS analyses based on the AMT tag approach. We were able to define the lipid profiles of human plasma, erythrocytes, and lymphocytes based on qualitative and quantitative differences in lipid abundance.  相似文献   
993.
Two endo-β-1,4-glucanase cDNAs, eg27I and eg27II , from the mollusc Ampullaria crossean were expressed in Pichia pastoris cells. The secreted His6-tagged proteins were purified in a single chromatography step. The purified recombinant EG27I and EG27II showed enzymatic activity on carboxylmethyl cellulose sodium salt at 15.31 U/mg and 12.40 U/mg, respectively. The optimum pH levels of the recombinant EG27I and EG27II were 5.5 and 5.5–6.0, respectively, and the optimum temperatures were 50°C and 50°C–55°C, respectively. The pH stability study revealed that both EG27I and EG27II showed their highest stability at pH 8.0. Analysis of their thermostability indicated that both EG27I and EG27II were relatively stable up to 40°C. Site-directed mutagenesis of Asp43 and Asp153 of both EG27I and EG27II showed that the two Asp residues are critical for the enzymatic activity.  相似文献   
994.
To study the effect of special brain area regional cerebral blood flow (rCBF) abnormal perfusion on learning and memory function and its molecular mechanism, 64 adult male healthy Sprague-Dawley (SD) rats were randomly divided into two groups, the false operation group (control group) and the operation group (model group). After surgical operation, the operation group undertook bilateral common carotid artery permanent ligation, while the other group did not. Learning and memory function were measured by Y-maze at 4 h, 8 h, 24 h and 3 d after surgical operation, respectively. The rCBF of the right frontal lobe and hippocampus was also detected by the PerifluxPF model laser Doppler flowmetry, and the expressions of c-fos or c-jun or Bcl-2 and Bax were also measured by immune histochemistry S-P method accordingly. Results showed that the rCBF of the right frontal lobe and hippocampus in the operation group was significantly lower than that in the false operation group (P < 0.05). The learning indexes, error number (EN), day of reach standard and total reaction time (TRT) in the operation group, were significantly higher than that in the false operation group (P < 0.05). However, the initiative evasion rate in the operation group was significantly lower than that in the false operation group. The study also found that the rCBF was relatively more, the indexes (EN, the day of reach standard and TRT) relatively fewer, but the initiative evasion rate and the memory keeping rate were relatively more. The positive expression and the average absorbency of Fos and Jun in the operation group were significantly higher than that in the false operation group (P < 0.05). Furthermore, Bax and Bcl-2 positive cells were all increased over time in the operation group, and the expression ratio of Bax/Bcl-2 in the operation group was significantly higher than that in the false operation group (P < 0.01). In conclusion, rCBF decrease can impair the learning and memory function in rats, which may be related to the increase of the expression ratio of c-fos or c-jun or Bcl-2 or Bax in the frontal cortex and hippocampus.  相似文献   
995.
Prader-Willi syndrome (PWS) is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a approximately 4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85) in PWS. To test this hypothesis, we created a approximately 150 kb deletion of the > 40 copies of Snord116 (Pwcr1/MBII-85) in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation.  相似文献   
996.
Ding G  Yu Z  Zhao J  Wang Z  Li Y  Xing X  Wang C  Liu L  Li Y 《PloS one》2008,3(10):e3357
Efforts in phylogenomics have greatly improved our understanding of the backbone tree of life. However, due to the systematic error in sequence data, a sequence-based phylogenomic approach leads to well-resolved but statistically significant incongruence. Thus, independent test of current phylogenetic knowledge is required. Here, we have devised a distance-based strategy to reconstruct a highly resolved backbone tree of life, on the basis of the genome context networks of 195 fully sequenced representative species. Along with strongly supporting the monophylies of three superkingdoms and most taxonomic sub-divisions, the derived tree also suggests some intriguing results, such as high G+C gram positive origin of Bacteria, classification of Symbiobacterium thermophilum and Alcanivorax borkumensis in Firmicutes. Furthermore, simulation analyses indicate that addition of more gene relationships with high accuracy can greatly improve the resolution of the phylogenetic tree. Our results demonstrate the feasibility of the reconstruction of highly resolved phylogenetic tree with extensible gene networks across all three domains of life. This strategy also implies that the relationships between the genes (gene network) can define what kind of species it is.  相似文献   
997.
The BLAP75 protein combines with the BLM helicase and topoisomerase (Topo) IIIalpha to form an evolutionarily conserved complex, termed the BTB complex, that functions to regulate homologous recombination. BLAP75 binds DNA, associates with both BLM and Topo IIIalpha, and enhances the ability of the BLM-Topo IIIalpha pair to branch migrate the Holliday junction (HJ) or dissolve the double Holliday junction (dHJ) structure to yield non-crossover recombinants. Here we seek to understand the relevance of the biochemical attributes of BLAP75 in HJ processing. With the use of a series of BLAP75 protein fragments, we show that the evolutionarily conserved N-terminal third of BLAP75 mediates complex formation with BLM and Topo IIIalpha and that the DNA binding activity resides in the C-terminal third of this novel protein. Interestingly, the N-terminal third of BLAP75 is just as adept as the full-length protein in the promotion of dHJ dissolution and HJ unwinding by BLM-Topo IIIalpha. Thus, the BLAP75 DNA binding activity is dispensable for the ability of the BTB complex to process the HJ in vitro. Lastly, we show that a BLAP75 point mutant (K166A), defective in Topo IIIalpha interaction, is unable to promote dHJ dissolution and HJ unwinding by BLM-Topo IIIalpha. This result provides proof that the functional integrity of the BTB complex is contingent upon the interaction of BLAP75 with Topo IIIalpha.  相似文献   
998.
Human metallothionein-3 (hMT3), also named as human neuronal growth inhibitory factor (hGIF), can inhibit the outgrowth of embryonic cortical neurons in the presence of brain extracts. In order to systematically study the structure-property-reactivity-function relationship of hGIF, our laboratory designed a series of mutants and studied their structure, property, reactivity and functions by a series of chemical and biological tools including UV spectroscopy, CD spectroscopy, NMR, chemical reaction and primary neuronal culture assays. In summary, we concluded that the bioactivity of hGIF was regulated by multiple factors, including the 6CPCP9 motif, an additional threonine insert at sequence position 5, domain-domain interactions, the structure and stability of the metal-thiolate cluster and the linker. Our studies provide more and more evidences which revealed that the bioactivity of hGIF is mainly related to the essential metal release and its characteristic conformation.  相似文献   
999.
Human albumin is thought to hydrolyze esters because multiple equivalents of product are formed for each equivalent of albumin. Esterase activity with p-nitrophenyl acetate has been attributed to turnover at tyrosine 411. However, p-nitrophenyl acetate creates multiple, stable, acetylated adducts, a property contrary to turnover. Our goal was to identify residues that become acetylated by p-nitrophenyl acetate and determine the relationship between stable adduct formation and turnover. Fatty acid-free human albumin was treated with 0.5 mm p-nitrophenyl acetate for 5 min to 2 weeks, or with 10 mm p-nitrophenyl acetate for 48 h to 2 weeks. Aliquots were digested with pepsin, trypsin, or GluC and analyzed by mass spectrometry to identify labeled residues. Only Tyr-411 was acetylated within the first 5 min of reaction with 0.5 mm p-nitrophenyl acetate. After 0.5-6 h there was partial acetylation of 16-17 residues including Asp-1, Lys-4, Lys-12, Tyr-411, Lys-413, and Lys-414. Treatment with 10 mm p-nitrophenyl acetate resulted in acetylation of 59 lysines, 10 serines, 8 threonines, 4 tyrosines, and Asp-1. When Tyr-411 was blocked with diisopropylfluorophosphate or chlorpyrifos oxon, albumin had normal esterase activity with beta-naphthyl acetate as visualized on a nondenaturing gel. However, after 82 residues had been acetylated, esterase activity was almost completely inhibited. The half-life for deacetylation of Tyr-411 at pH 8.0, 22 degrees C was 61 +/- 4 h. Acetylated lysines formed adducts that were even more stable. In conclusion, the pseudo-esterase activity of albumin is the result of irreversible acetylation of 82 residues and is not the result of turnover.  相似文献   
1000.
CD147, a member of the immunoglobulin superfamily (IgSF), plays fundamental roles in intercellular interactions in numerous pathological and physiological processes. Importantly, our previous studies have demonstrated that HAb18G/CD147 is a novel hepatocellular carcinoma (HCC)-associated antigen, and HAb18G/CD147 stimulates adjacent fibroblasts and HCC cells to produce elevated levels of several matrix metalloproteinases, facilitating invasion and metastasis of HCC cells. In addition, HAb18G/CD147 has also been shown to be a novel universal cancer biomarker for diagnosis and prognostic assessment of a wide range of cancers. However, the structural basis underlying the multifunctional character of CD147 remains unresolved. We report here the crystal structure of the extracellular portion of HAb18G/CD147 at 2.8A resolution. The structure comprises an N-terminal IgC2 domain and a C-terminal IgI domain, which are connected by a 5-residue flexible linker. This unique C2-I domain organization is distinct from those of other IgSF members. Four homophilic dimers exist in the crystal and adopt C2-C2 and C2-I dimerization rather than V-V dimerization commonly found in other IgSF members. This type of homophilic association thus presents a novel model for homophilic interaction between C2 domains of IgSF members. Moreover, the crystal structure of HAb18G/CD147 provides a good structural explanation for the established multifunction of CD147 mediated by homo/hetero-oligomerizations and should represent a general architecture of other CD147 family members.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号