首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154526篇
  免费   23489篇
  国内免费   9371篇
  2024年   200篇
  2023年   1463篇
  2022年   3256篇
  2021年   6716篇
  2020年   6081篇
  2019年   8602篇
  2018年   8731篇
  2017年   7846篇
  2016年   9401篇
  2015年   11242篇
  2014年   12666篇
  2013年   13738篇
  2012年   13222篇
  2011年   12104篇
  2010年   9503篇
  2009年   7758篇
  2008年   7705篇
  2007年   6508篇
  2006年   5618篇
  2005年   4663篇
  2004年   4090篇
  2003年   3820篇
  2002年   3173篇
  2001年   2755篇
  2000年   2349篇
  1999年   2133篇
  1998年   1189篇
  1997年   1207篇
  1996年   1110篇
  1995年   1088篇
  1994年   962篇
  1993年   796篇
  1992年   958篇
  1991年   786篇
  1990年   647篇
  1989年   515篇
  1988年   395篇
  1987年   386篇
  1986年   328篇
  1985年   334篇
  1984年   224篇
  1983年   209篇
  1982年   137篇
  1981年   101篇
  1980年   72篇
  1979年   80篇
  1978年   66篇
  1976年   52篇
  1973年   63篇
  1972年   52篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The Na‐ion battery is recognized as a possible alternative to the Li‐ion battery for applications where power and cost override energy density performance. However, the increasing instability of their electrolyte with temperature is still problematic. Thus, a central question remains how to design Na‐based electrolytes. Here, the discovery of a Na‐based electrolyte formulation is reported which enlists four additives (vinylene carbonate, succinonitrile, 1,3‐propane sultone, and sodium difluoro(oxalate)borate) in proper quantities that synergistically combine their positive attributes to enable a stable solid electrolyte interphase at both negative and positive electrodes surface at 55 °C. Moreover, the role of each additive that consists in producing specific NaF coatings, thin elastomers, sulfate‐based deposits, and so on via combined impedance and X‐ray photoelectron spectroscopy is rationalized. It is demonstrated that empirical electrolyte design rules previously established for Li‐ion technology together with theoretical guidance is vital in the quest for better Na‐based electrolytes that can be extended to other chemistries. Overall, this finding, which is implemented to 18 650 cells, widens the route to the rapid development of the Na‐ion technology based on Na3V2(PO4)2F3/C chemistry.  相似文献   
62.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   
63.
64.
New olean-18(19)-ene triterpenoids were effectively synthesized by the interaction of allobetulin or its acetate with phosphorous oxychloride in refluxing pyridine. The structures of the synthesized 17-chloromethyloleane-18(19)-enes were confirmed by NMR spectroscopy and X-ray analysis.  相似文献   
65.
Land‐cover change can alter the spatiotemporal distribution of water inputs to mountain ecosystems, an important control on land‐surface and land‐atmosphere hydrologic fluxes. In eastern Mexico, we examined the influence of three widespread land‐cover types, montane cloud forest, coffee agroforestry, and cleared areas, on total and net water inputs to soil. Stand structural characteristics, as well as rain, fog, stemflow, and throughfall (water that falls through the canopy) water fluxes were measured across 11 sites during wet and dry seasons from 2005 to 2008. Land‐cover type had a significant effect on annual and seasonal net throughfall (NTF <0=canopy water retention plus canopy evaporation; NTF >0=fog water deposition). Forest canopies retained and/or lost to evaporation (i.e. NTF<0) five‐ to 11‐fold more water than coffee agroforests. Moreover, stemflow was fourfold higher under coffee shade than forest trees. Precipitation seasonality and phenological patterns determined the magnitude of these land‐cover differences, as well as their implications for the hydrologic cycle. Significant negative relationships were found between NTF and tree leaf area index (R2=0.38, P<0.002), NTF and stand basal area (R2=0.664, P<0.002), and stemflow and epiphyte loading (R2=0.414, P<0.001). These findings indicate that leaf and epiphyte surface area reductions associated with forest conversion decrease canopy water retention/evaporation, thereby increasing throughfall and stemflow inputs to soil. Interannual precipitation variability also altered patterns of water redistribution across this landscape. Storms and hurricanes resulted in little difference in forest‐coffee wet season NTF, while El Niño Southern Oscillation was associated with a twofold increase in dry season rain and fog throughfall water deposition. In montane headwater regions, changes in water delivery to canopies and soils may affect infiltration, runoff, and evapotranspiration, with implications for provisioning (e.g. water supply) and regulating (e.g. flood mitigation) ecosystem services.  相似文献   
66.
Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling of the AMPA-type glutamate receptor (AMPAR) subunit GLR-1 in C. elegans neurons. Here we show that RAB-6.2 and a close paralog, RAB-6.1, together regulate retrograde transport in both neurons and non-neuronal tissue. Mutants for rab-6.1 or rab-6.2 fail to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. Loss of both rab-6.1 and rab-6.2 results in an additive effect on GLR-1 retrograde recycling, indicating that these two C. elegans Rab6 isoforms have overlapping functions. MIG-14 (Wntless) protein, which undergoes retrograde recycling, undergoes a similar degradation in intestinal epithelia in both rab-6.1 and rab-6.2 mutants, suggesting a broader role for these proteins in retrograde transport. Surprisingly, MIG-14 is localized to separate, spatially segregated endosomal compartments in rab-6.1 mutants compared to rab-6.2 mutants. Our results indicate that RAB-6.1 and RAB-6.2 have partially redundant functions in overall retrograde transport, but also have their own unique cellular- and subcellular functions.  相似文献   
67.
68.
69.
In total, 366 birds representing 55 species in 24 families and eight orders, were examined for chewing lice (Phthiraptera: Amblycera, Ischnocera) in two high‐altitude localities in Yunnan Province, China. In Ailaoshan, almost all of the birds examined were resident passeriforms, of which 36% were parasitized by chewing lice. In Jinshanyakou, most birds were on migration, and included both passerine and non‐passerine birds. Of the passerine birds caught in Jinshanyakou, only one bird (0.7%) was parasitized by chewing lice. The prevalence of Myrsidea and Brueelia‐complex lice on birds caught in Ailaoshan was higher than in previous reports. Of the chewing lice identifiable to species level, three represent new records for China: Actornithophilus hoplopteri (Mjöberg, 1910), Maculinirmus ljosalfar Gustafsson & Bush, 2017 and Quadraceps sinensis Timmermann, 1954. In total, 17 new host records are included, of which we describe two as new species in the Brueelia‐complex: Guimaraesiella (Cicchinella) ailaoshanensis sp. nov. ex Schoeniparus dubius dubius (Hume, 1874) and G. (C.) montisodalis sp. nov. ex Fulvetta manipurensis tonkinensis Delacour & Jabouille, 1930. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:9FC3D8EE‐2CED‐4DBE‐A1DB‐471B71260D27 .  相似文献   
70.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号