首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51496篇
  免费   17244篇
  国内免费   2663篇
  71403篇
  2024年   79篇
  2023年   385篇
  2022年   919篇
  2021年   1675篇
  2020年   2988篇
  2019年   4710篇
  2018年   4794篇
  2017年   4844篇
  2016年   5088篇
  2015年   5538篇
  2014年   5506篇
  2013年   6029篇
  2012年   4262篇
  2011年   3781篇
  2010年   4385篇
  2009年   3003篇
  2008年   2250篇
  2007年   1684篇
  2006年   1430篇
  2005年   1345篇
  2004年   1147篇
  2003年   1085篇
  2002年   987篇
  2001年   720篇
  2000年   566篇
  1999年   498篇
  1998年   251篇
  1997年   207篇
  1996年   177篇
  1995年   146篇
  1994年   153篇
  1993年   106篇
  1992年   111篇
  1991年   110篇
  1990年   88篇
  1989年   68篇
  1988年   50篇
  1987年   32篇
  1986年   37篇
  1985年   32篇
  1984年   25篇
  1983年   27篇
  1982年   14篇
  1980年   5篇
  1979年   6篇
  1975年   7篇
  1971年   5篇
  1970年   4篇
  1968年   4篇
  1966年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
Integrating phylogenetic data into macroecological studies of biodiversity patterns may complement the information provided by present‐day spatial patterns. In the present study, we used range map data for all Geonoma (Arecaceae) species to assess whether Geonoma species composition forms spatially coherent floristic clusters. We then evaluated the extent to which the spatial variation in species composition reflects present‐day environmental variation vs. nonenvironmental spatial effects, as expected if the pattern reflects historical biogeography. We also examined the degree of geographic structure in the Geonoma phylogeny. Finally, we used a dated phylogeny to assess whether species richness within the floristic clusters was constrained by a specific historical biogeographic driver, namely time‐for‐diversification. A cluster analysis identified six spatially coherent floristic clusters, four of which were used to reveal a significant geographic phylogenetic structure. Variation partitioning analysis showed that 56 percent of the variation in species composition could be explained by spatial variables alone, consistent with historical factors having played a major role in generating the Geonoma diversity pattern. To test for a time‐for‐diversification effect, we correlated four different species richness measures with the diversification time of the earliest large lineage that is characteristic of each cluster. In support of this hypothesis, we found that geographic areas with higher richness contained older radiations. We conclude that current geographic diversity patterns in Geonoma reflect the present‐day climate, but to a larger extent are related to nonenvironmental spatial constraints linked to colonization time, dispersal limitation, and geological history, followed by within‐area evolutionary diversification. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   
103.
104.
105.
106.
Mitotic spindle formation in animal cells involves microtubule nucleation from two centrosomes that are positioned at opposite sides of the nucleus. Microtubules are captured by the kinetochores and stabilized. In addition, microtubules can be nucleated independently of the centrosome and stabilized by a gradient of Ran—GTP, surrounding the mitotic chromatin. Complex regulation ensures the formation of a bipolar apparatus, involving motor proteins and controlled polymerization and depolymerization of microtubule ends. The bipolar apparatus is, in turn, responsible for faithful chromosome segregation. During recent years, a variety of experiments has indicated that defects in specific motor proteins, centrosome proteins, kinases and other proteins can induce the assembly of aberrant spindles with a monopolar morphology or with poorly separated poles. Induction of monopolar spindles may be a useful strategy for cancer therapy, since ensuing aberrant mitotic exit will usually lead to cell death. In this review, we will discuss the various underlying molecular mechanisms that may be responsible for monopolar spindle formation.  相似文献   
107.
We investigated whether healthy young (age ? 40) and elderly (age ? 65) people infected with cytomegalovirus (CMV) had similar levels of CD8+ T cell cytokine production and proliferation in response to an immunodominant CMV pp65 peptide pool given the role of CD8+ T cells in controlling viral infection and the association of CMV with immunosenescence. Plus, we determined the effects of aging and CMV-infectious status on plasma levels of IL-27, an innate immune cytokine with pro- and anti-inflammatory properties, as well as on its relationship to IFN-γ in that IL-27 can promote the production of IFN-γ. The results of our study show that young and elderly people had similar levels of CD8+ T cell proliferation, and IFN-γ and TNF-α production in response to CMV pp65 peptides. Plasma levels of IL-27 were similar between the two groups although CMV-infected young and elderly people had a trend toward increased levels of IL-27. Regardless of aging and CMV-infectious status, plasma levels of IL-27 correlated highly with plasma levels of IFN-γ. These findings suggest the maintenance of CMV pp65-specific CD8+ T cell proliferation and cytokine production with aging as well as the sustaining of circulatory IL-27 levels and its biological link to IFN-γ in young and elderly people irrespective of CMV infection.  相似文献   
108.
Phagocytosis and autophagy are two important and related arms of the host's first-line defense against microbial invasion. Rubicon is a RUN domain containing cysteine-rich protein that functions as part of a Beclin-1-Vps34-containing autophagy complex. We report that Rubicon is also an essential, positive regulator of the NADPH oxidase complex. Upon microbial infection or Toll-like-receptor 2 (TLR2) activation, Rubicon interacts with the p22phox subunit of the NADPH oxidase complex, facilitating its phagosomal trafficking to induce a burst of reactive oxygen species (ROS) and inflammatory cytokines. Consequently, ectopic expression or depletion of Rubicon profoundly affected ROS, inflammatory cytokine production, and subsequent antimicrobial activity. Rubicon's actions in autophagy and in the NADPH oxidase complex are functionally and genetically separable, indicating that Rubicon functions in two ancient innate immune machineries, autophagy and phagocytosis, depending on the environmental stimulus. Rubicon may thus be pivotal to generating an optimal intracellular immune response against microbial infection.  相似文献   
109.
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.  相似文献   
110.
Cryptococcus neoformans is a pathogenic yeast that can form titan cells in the lungs, which are fungal cells of abnormal enlarged size. Little is known about the factors that trigger titan cells. In particular, it is not known how the host environment influences this transition. In this work, we describe the formation of titan cells in two mouse strains, CD1 and C57BL/6J. We found that the proportion of C. neoformans titan cells was significantly higher in C57BL/6J mice than in CD1. This higher proportion of titan cells was associated with a higher dissemination of the yeasts to the brain. Histology sections demonstrated eosinophilia in infected animals, although it was significantly lower in the CD1 mice which presented infiltration of lymphocytes. Both mouse strains presented infiltration of granulocytes, but the amount of eosinophils was higher in C57BL/6J. CD1 mice showed a significant accumulation of IFN‐γ, TNF‐α and IL17, while C57BL/BL mice had an increase in the anti‐inflammatory cytokine IL‐4. IgM antibodies to the polysaccharide capsule and total IgE were more abundant in the sera from C57BL/6J, confirming that these animals present a Th2‐type response. We conclude that titan cell formation in C. neoformans depends, not only on microbe factors, but also on the host environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号