首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8478篇
  免费   932篇
  国内免费   888篇
  2024年   11篇
  2023年   84篇
  2022年   227篇
  2021年   429篇
  2020年   328篇
  2019年   379篇
  2018年   387篇
  2017年   327篇
  2016年   378篇
  2015年   563篇
  2014年   639篇
  2013年   667篇
  2012年   767篇
  2011年   682篇
  2010年   418篇
  2009年   366篇
  2008年   474篇
  2007年   415篇
  2006年   316篇
  2005年   303篇
  2004年   314篇
  2003年   324篇
  2002年   339篇
  2001年   274篇
  2000年   179篇
  1999年   152篇
  1998年   95篇
  1997年   65篇
  1996年   67篇
  1995年   57篇
  1994年   50篇
  1993年   34篇
  1992年   34篇
  1991年   38篇
  1990年   29篇
  1989年   20篇
  1988年   12篇
  1987年   13篇
  1986年   7篇
  1985年   12篇
  1984年   7篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
881.
The melibiose permease of Salmonella enterica serovar Typhimurium (MelBSt) catalyzes symport of melibiose with Na+, Li+, or H+. Bioinformatics and mutational analyses indicate that a conserved Gly117 (helix IV) is a component of the Na+-binding site. In this study, Gly117 was mutated to Ser, Asn, or Cys. All three mutations increase the maximum rate (Vmax) for melibiose transport in Escherichia coli DW2 and greatly decrease Na+ affinity, indicating that intracellular release of Na+ is facilitated. Rapid melibiose transport, particularly by the G117N mutant, triggers osmotic lysis in the lag phase of growth. The findings support the previous conclusion that Gly117 plays an important role in cation binding and translocation. Furthermore, a spontaneous second-site mutation (P148L between loop4-5 and helix V) in the G117C mutant prevents cell lysis. This mutation significantly decreases Vmax with little effect on cosubstrate binding in G117C, G117S, and G117N mutants. Thus, the P148L mutation specifically inhibits transport velocity and thereby blocks the lethal effect of elevated melibiose transport in the Gly117 mutants.  相似文献   
882.
Bacillus thuringiensis is an important microbial insecticide used in the control of agricultural pests. Here we report the finished, annotated genome sequence of Bacillus thuringiensis serovar Sichuansis strain MC28, which can form parasporal crystals consisting of Cry4Cc1, Cry30Fa1, Cry53Ab1, Cry54Aa1, Cry54Ab1, Cry68Aa1, Cry69Aa1, Cry69Aa2, Cry70Ba1, Cyt1Da1, and Cyt2Aa3. It is also highly toxic to lepidopterous and dipterous insects.  相似文献   
883.
The replacement of tyrosine by aspartic acid at position M210 in the photosynthetic reaction center of Rhodobacter sphaeroides results in the generation of a fast charge recombination pathway that is not observed in the wild-type. Apparently, the initially formed charge-separated state (cation of the special pair, P, and anion of the A-side bacteriopheophytin, HA) can decay rapidly via recombination through the neighboring bacteriochlorophyll (BA) soon after formation. The charge-separated state then relaxes over tens of picoseconds and recombination slows to the hundreds-of-picoseconds or nanosecond timescale. This dielectric relaxation results in a time-dependent blue shift of BA absorption, which can be monitored using transient absorbance measurements. Protein dynamics also appear to modulate the electron transfer between HA and the next electron carrier, QA (a ubiquinone). The kinetics of this reaction are complex in the mutant, requiring two kinetic terms, and the spectra associated with the two terms are distinct; a red shift of the HA ground-state bleaching is observed between the shorter and longer HA-to-QA electron-transfer phases. The kinetics appears to be pH-independent, suggesting a negligible contribution of static heterogeneity originating from protonation/deprotonation in the ground state. A dynamic model based on the energy levels of the two early charge-separated states, P+BA and P+HA, has been developed in which the energetics of these states is modulated by fast protein dielectric relaxations and this in turn alters both the kinetic complexity of the reaction and the reaction pathway.  相似文献   
884.
Newly assembled dengue viruses (DENV) undergo maturation to become infectious particles. The maturation process involves major rearrangement of virus surface premembrane (prM) and envelope (E) proteins. The prM-E complexes on immature viruses are first assembled as trimeric spikes in the neutral pH environment of the endoplasmic reticulum. When the virus is transported to the low pH environment of the exosomes, these spikes rearrange into dimeric structures, which lie parallel to the virus lipid envelope. The proteins involved in driving this process are unknown. Previous cryoelectron microscopy studies of the mature DENV showed that the prM-stem region (residues 111–131) is membrane-associated and may interact with the E proteins. Here we investigated the prM-stem region in modulating the virus maturation process. The binding of the prM-stem region to the E protein was shown to increase significantly at low pH compared with neutral pH in ELISAs and surface plasmon resonance studies. In addition, the affinity of the prM-stem region for the liposome, as measured by fluorescence correlation spectroscopy, was also increased when pH is lowered. These results suggest that the prM-stem region forms a tight association with the virus membrane and attracts the associated E protein in the low pH environment of exosomes. This will lead to the surface protein rearrangement observed during maturation.  相似文献   
885.
Feng XL  Liu QT  Cao RB  Zhou B  Wang FQ  Deng WL  Qiu YF  Zhang Y  Ishag H  Ma ZY  Zheng QS  Chen PY 《Amino acids》2012,42(6):2215-2222
The bursa of Fabricius (BF) is the central humoral immune organ unique to birds. Here, we isolated a novel bursal pentapeptide I (BPP-I), LGPGP, from BF. BPP-I could play inhibition effect on MCF-7 but not on CEF or Vero cell proliferation in vitro, and enhance antitumor factor p53 protein expression. Also, BPP-I stimulated antibody production in a dose-dependent manner in hybridoma cell. Furthermore, BPP-I could induce various immune responses in mice immunization experiments, including increase antibody production and cytokines IL-4 and IFN-γ level, and induce T-cell immunophenotyping. These results suggest that BPP-I is a potential immunomodulator of antitumor and immunity. The study could provide some novel insights on the probable candidate reagent for the antitumor and immune improvement.  相似文献   
886.
Bursa of Fabricius is the acknowledged vital humoral immune system for B cell differentiation and antibody production. To study the molecular mechanism underlying the effect of bursal-derived BP5, we used gene microarray to analyze the genomic expression profiling of BP5-treated hybridoma cells. BP5 exhibited an immunomodulatory effect on antibody production in hybridoma cells and induced alterations in the gene expression profiles related to the immune-related biological processes, such as T cell activation and proliferation, B cell activation, B cell-mediated immunity, and cytokines cytokine production involved in immune response. In addition, 26 biological pathways associated with immunomodulatory functions were regulated in BP5-treated hybridoma cells, in which p53 signal pathway played an important role in antitumor. Among these regulated genes, 12 differentially expressed genes were verified by qRT-PCR. The activation of p53 activity by BP5 was further confirmed by p53 luciferase reporter assay and p53 expression. Our data revealed that bursal-derived BP5 could regulate various immune-related cellular processes, including antitumor factor p53 signal pathway, perhaps partially accounting for the reported immunomodulatory roles and novel antiproliferation on tumor cells functions of bursal-derived bioactive factor BP5.  相似文献   
887.
VP4, the major structural protein of the haloarchaeal pleomorphic virus, HRPV‐1, is glycosylated. To define the glycan structure attached to this protein, oligosaccharides released by β‐elimination were analysed by mass spectrometry and nuclear magnetic resonance spectroscopy. Such analyses showed that the major VP4‐derived glycan is a pentasaccharide comprising glucose, glucuronic acid, mannose, sulphated glucuronic acid and a terminal 5‐N‐formyl‐legionaminic acid residue. This is the first observation of legionaminic acid, a sialic acid‐like sugar, in an archaeal‐derived glycan structure. The importance of this residue for viral infection was demonstrated upon incubation with N‐acetylneuraminic acid, a similar monosaccharide. Such treatment reduced progeny virus production by half 4 h post infection. LC‐ESI/MS analysis confirmed the presence of pentasaccharide precursors on two different VP4‐derived peptides bearing the N‐glycosylation signal, NTT. The same sites modified by the native host, Halorubrum sp. strain PV6, were also recognized by the Haloferax volcanii N‐glycosylation apparatus, as determined by LC‐ESI/MS of heterologously expressed VP4. Here, however, the N‐linked pentasaccharide was the same as shown to decorate the S‐layer glycoprotein in this species. Hence, N‐glycosylation of the haloarchaeal viral protein, VP4, is host‐specific. These results thus present additional examples of archaeal N‐glycosylation diversity and show the ability of Archaea to modify heterologously expressed proteins.  相似文献   
888.
889.
In this contribution, a simple, rapid, colorimeteric and selective assay for lysine was achieved by a controllable end-to-end assembly of gold nanorods (AuNRs) in the presence of Eu(3+) and lysine. This one-pot end-to-end assembly of 11-mercaptoundecanoic acid (MUA) modified AuNRs was occurred in Britton-Robinson buffer of pH 6.0, which involves the coordination binding between Eu(3+) and COO(-) groups as well as the electrostatic interaction of the COO(-) groups of MUA with the -NH(3)(+) group of lysine. As monitored by absorption spectra, scanning electron microscopic (SEM) images and dynamic light scattering (DLS) measurement, the end-to-end chain assembly results in large red-shift in the longitudinal plasmon resonance absorption (LPRA), giving red-to-blue color change of AuNRs. Importantly, it was found that the red-shift of LPRA is linearly proportional to the concentrations of lysine in the range of 5.0×10(-6)-1.0×10(-3)M with the limit of detection (LOD) being 1.6×10(-6)M (3σ/k). This red-shift of LPRA is highly selective, making it possible to develop a rapid, selective and visual assay for lysine in food samples.  相似文献   
890.
An integrated platform for a very sensitive detection of cocaine based on a refractometric biosensor is demonstrated. The system uses a waveguide grating biosensor functionalized with a cocaine multivalent antigen-carrier protein conjugate. The immunoassay scheme consists of the competitive binding of cocaine-specific antibodies to the immobilized conjugates. A 1000-fold enhancement of the sensor's sensitivity is achieved when using gold conjugated monoclonal antibodies instead of free antibodies. Together with the optimization of the assay conditions, the setup is designed for a quick identification of narcotics using automated sampling. The results show that the presence of cocaine in a liquid sample could be identified down to a concentration of 0.7 nM within one minute. This value can be reduced even further when longer binding time is allowed (0.2 nM after 15 min). Application of the system to detection of narcotics at airport security control points is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号