首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4169篇
  免费   388篇
  国内免费   251篇
  4808篇
  2024年   5篇
  2023年   48篇
  2022年   129篇
  2021年   211篇
  2020年   123篇
  2019年   162篇
  2018年   176篇
  2017年   132篇
  2016年   175篇
  2015年   284篇
  2014年   290篇
  2013年   344篇
  2012年   358篇
  2011年   349篇
  2010年   207篇
  2009年   176篇
  2008年   238篇
  2007年   197篇
  2006年   154篇
  2005年   166篇
  2004年   117篇
  2003年   123篇
  2002年   92篇
  2001年   86篇
  2000年   70篇
  1999年   69篇
  1998年   42篇
  1997年   38篇
  1996年   37篇
  1995年   38篇
  1994年   27篇
  1993年   21篇
  1992年   25篇
  1991年   24篇
  1990年   17篇
  1989年   9篇
  1988年   11篇
  1987年   12篇
  1986年   7篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1959年   1篇
排序方式: 共有4808条查询结果,搜索用时 15 毫秒
131.
BACKGROUNDAs the third most abundant element, aluminum is widespread in the environment. Previous studies have shown that aluminum has a neurotoxic effect and its exposure can impair neuronal development and cognitive function.AIMTo study the effects of aluminum on epigenetic modification in neural stem cells and neurons. METHODSNeural stem cells were isolated from the forebrain of adult mice. Neurons were isolated from the hippocampi tissues of embryonic day 16-18 mice. AlCl3 at 100 and 200 μmol/L was applied to stem cells and neurons. RESULTSAluminum altered the differentiation of adult neural stem cells and caused apoptosis of newborn neurons while having no significant effects on the proliferation of neural stem cells. Aluminum application also significantly inhibited the dendritic development of hippocampal neurons. Mechanistically, aluminum exposure significantly affected the levels of DNA 5-hydroxy-methylcytosine, 5-methylcytosine, and N6-methyladenine in stem cells and neurons. CONCLUSIONOur findings indicate that aluminum may regulate neuronal development by modulating DNA modifications.  相似文献   
132.
Yu  Jinlei  Xia  Manli  Zhao  Yanyan  He  Hu  Guan  Baohua  Chen  Feizhou  Liu  Zhengwen  Jeppesen  Erik 《Hydrobiologia》2021,848(18):4335-4346

Small fish are highly associated with submerged macrophytes but may potentially hamper their growth due to nutrient excretion that stimulate growth of phytoplankton and periphyton growth. We conducted a mesocosm experiment to elucidate the effects of the small omnivore Chinese bitterling Acheilognathus macropterus on the growth of phytoplankton, periphyton and the submerged macrophyte Vallisneria denseserrulata. The treatments were fishless as well as low (LF) and high (HF) fish density. We found that the concentrations of nutrients and the phytoplankton biomass increased substantially in both fish treatments, leading to a significantly higher light attenuation compared with the control. Moreover, bitterling substantially enhanced the biomass of periphyton on plant leaves. Consequently, the relative growth rate (RGR) of V. denseserrulata was significantly suppressed in HF, while RGR in the LF treatment did not differ significantly from the controls. However, the bitterling also stimulated the ramet production of V. denseserrulata, significantly. Our results indicate that Chinese bitterling reduce the RGR of V. denseserrulata under high fish density condition. Therefore, the density of Chinese bitterling should be kept low in order to reduce the negative effects of the fish on the RGR of submerged macrophytes (e.g. V. denseserrulata), when restoring lakes by plant transplantation.

  相似文献   
133.
Dear Editor, A series of studies had focused on the ecological stability of human microbiome (Lozupone et al.,2012;Faith et al.,2013;Moya and Ferrer,2016).Despite the continuous perturbation and the highly personalized composition within the human microbiome (Human Microbiome Project,2012),healthy adults stably maintain their microbial communities in terms of space and time (Faith et al.,2013;Moya and Ferrer,2016;Oh et al.,2016).This stability is proved to be critical for the well-being of human body (Lozupone et al.,2012).On the contrary,major shifts in microbial community composition are often related to diseases (Lynch and Pedersen,2016).  相似文献   
134.
Ma  Bohan  Liu  Zhanzhu  Yan  Wei  Wang  Lixue  He  Haobo  Zhang  Aijing  Li  Zeyuan  Zhao  Qiuzhu  Liu  Mingming  Guan  Shuyan  Liu  Siyan  Qu  Jing  Yao  Dan  Zhang  Jun 《Functional & integrative genomics》2021,21(3):435-450
Functional & Integrative Genomics - Soybean oil is composed of fatty acids and glycerol. The content and composition of fatty acids partly determine the quality of soybean seeds. Circular RNAs...  相似文献   
135.
136.
皂苷类药物普遍分子量比较大,水溶性好,但不易透过细胞膜难以被人体吸收,因此口服制剂体内生物利用度较低.近年来对单体皂苷及总皂苷类药物制剂方面的研究越来越多,随着新型的给药系统和新辅料的出现,皂苷类药物在体内的生物利用度大大提高.本文主要介绍以单体皂苷或总皂苷活性部位为主药的制剂研究进展,以期为该类成分的进一步研究提供思路.  相似文献   
137.
Cyclic shedding of the endometrium is unique to menstruating species. The status of the decidua in mouse menstrual-like models seems to differ from that of the predecidua in humans before endometrial breakdown. The aim of this study was to determine how this difference in decidual status is related to endometrial breakdown. A mouse menstruallike model was generated by pharmacological progesterone withdrawal. Histomorphological analysis and reticular fiber staining were used to evaluate endometrial status. In situ zymography was used to determine the localization of active collagenase and gelatinase. The functional endometrial layer containing the mature decidual-like zone (MDZ) and predecidual-like zone (PZ) underwent breakdown. The reticular fibers underwent disruption and fragmentation and became loose or disappeared at 12 h in the PZ, where active collagenase and gelatinase were limited. The reticular fibers were visibly reduced at 24 h in the MDZ, where active collagenase was detected. A few reticular fibers remained; however, the functional layer had sloughed into the lumen of the uterus. The results showed that reticular fibers of the PZ are actively degraded during endometrial shedding.Key words: mouse menstrual-like model, predecidual-like zone, reticular fiber, gelatinase, collagenase  相似文献   
138.
Staurosporine induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Recently, it was demonstrated that the control of cellular redox balance and the defense against oxidative damage is one of the primary functions of cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) by supplying NADPH for antioxidant systems. The present report shows that silencing of IDPc expression in HeLa cells greatly enhances apoptosis induced by staurosporine. Transfection of HeLa cells with an IDPc small interfering RNA (siRNA) markedly decreased activity of IDPc, enhancing the susceptibility of staurosporine-induced apoptosis reflected by DNA fragmentation, cellular redox status and the modulation of apoptotic marker proteins. These results indicate that IDPc may play an important role in regulating the apoptosis induced by staurosporine and the sensitizing effect of IDPc siRNA on the apoptotic cell death of HeLa cells offers the possibility of developing a modifier of cancer chemotherapy.  相似文献   
139.
Saccharomyces cerevisiae LN-17 was selected from 26 kinds of primary yeast strains that belong to different genera and species. The iron- and zinc-enriched capability of strain LN-17 was higher than the others. The highest iron and zinc contents of the strain were obtained when the strain grew up under the following conditions: The strain was incubated (5%, v/v) in 50 mL wort medium (pH 6.0) with 100 mg/L Fe ion and 120 mg/L Zn ion. The medium was loaded into a 250-mL Erlenmeyer flask and shaken in a rotary shaker (200 rpm) at 30°C for 60 h. Ferrous sulfate and zinc sulfate were chosen as the source of Fe and Zn. The Fe and Zn contents of the dry cells were determined by atomic absorption spectrum analysis. Under the optimized cultivation conditions, the Fe and Zn contents reached 7.854 mg/g dry cells and 4.976 mg/g dry cells.  相似文献   
140.
Thermostable amylopullulanases can catalyse the hydrolysis of both α-1,4 and α-1,6 glucosidic bonds and are of considerable interest in the starch saccharification industry. In this study, the gene Apu-Tk encoding an extracellular amylopullulanase was cloned from an extremely thermophilic anaerobic archaeon Thermococcus kodakarensis KOD1. Apu-Tk encodes an 1100-amino acid protein with a 27-residue signal peptide, which has a predicted mass of 125 kDa after signal peptide cleavage. Sequence alignments showed that Apu-Tk contains the five regions conserved in all GH57 family proteins. Full-length Apu-Tk was expressed in Escherichia coli and purified to homogeneity. The purified enzyme displayed both pullulanase and amylase activity. The optimal temperature for Apu-Tk to hydrolyse pullulan and soluble starch was >100 °C. Apu-Tk was also active at a broad range of pH (4–7), with an optimum pH of ~5.0–5.5. Apu-Tk also retained >30% of its original activity and partially folded globular structure in the presence of 8% SDS or 10% β-mercaptoethanol. The high yield, broad pH range, and stability of Apu-Tk implicate it as a potential enzyme for industrial applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号