全文获取类型
收费全文 | 9228篇 |
免费 | 665篇 |
国内免费 | 521篇 |
专业分类
10414篇 |
出版年
2024年 | 17篇 |
2023年 | 97篇 |
2022年 | 206篇 |
2021年 | 340篇 |
2020年 | 245篇 |
2019年 | 283篇 |
2018年 | 298篇 |
2017年 | 242篇 |
2016年 | 333篇 |
2015年 | 487篇 |
2014年 | 597篇 |
2013年 | 663篇 |
2012年 | 762篇 |
2011年 | 720篇 |
2010年 | 424篇 |
2009年 | 377篇 |
2008年 | 438篇 |
2007年 | 431篇 |
2006年 | 377篇 |
2005年 | 361篇 |
2004年 | 298篇 |
2003年 | 303篇 |
2002年 | 243篇 |
2001年 | 195篇 |
2000年 | 194篇 |
1999年 | 164篇 |
1998年 | 110篇 |
1997年 | 104篇 |
1996年 | 105篇 |
1995年 | 102篇 |
1994年 | 79篇 |
1993年 | 78篇 |
1992年 | 128篇 |
1991年 | 101篇 |
1990年 | 73篇 |
1989年 | 72篇 |
1988年 | 66篇 |
1987年 | 49篇 |
1986年 | 41篇 |
1985年 | 53篇 |
1984年 | 33篇 |
1983年 | 24篇 |
1982年 | 19篇 |
1981年 | 10篇 |
1979年 | 10篇 |
1978年 | 6篇 |
1977年 | 7篇 |
1971年 | 7篇 |
1970年 | 7篇 |
1966年 | 7篇 |
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
71.
Tanya Svinkina Hongbo Gu Jeffrey C. Silva Philipp Mertins Jana Qiao Shaunt Fereshetian Jacob D. Jaffe Eric Kuhn Namrata D. Udeshi Steven A. Carr 《Molecular & cellular proteomics : MCP》2015,14(9):2429-2440
Introduction of antibodies specific for acetylated lysine has significantly improved the detection of endogenous acetylation sites by mass spectrometry. Here, we describe a new, commercially available mixture of anti-lysine acetylation (Kac) antibodies and show its utility for in-depth profiling of the acetylome. Specifically, seven complementary monoclones with high specificity for Kac were combined into a final anti-Kac reagent which results in at least a twofold increase in identification of Kac peptides over a commonly used Kac antibody. We outline optimal antibody usage conditions, effective offline basic reversed phase separation, and use of state-of-the-art LC-MS technology for achieving unprecedented coverage of the acetylome. The methods were applied to quantify acetylation sites in suberoylanilide hydroxamic acid-treated Jurkat cells. Over 10,000 Kac peptides from over 3000 Kac proteins were quantified from a single stable isotope labeling by amino acids in cell culture labeled sample using 7.5 mg of peptide input per state. This constitutes the deepest coverage of acetylation sites in quantitative experiments obtained to-date. The approach was also applied to breast tumor xenograft samples using isobaric mass tag labeling of peptides (iTRAQ4, TMT6 and TMT10-plex reagents) for quantification. Greater than 6700 Kac peptides from over 2300 Kac proteins were quantified using 1 mg of tumor protein per iTRAQ 4-plex channel. The novel reagents and methods we describe here enable quantitative, global acetylome analyses with depth and sensitivity approaching that obtained for other well-studied post-translational modifications such as phosphorylation and ubiquitylation, and should have widespread application in biological and clinical studies employing mass spectrometry-based proteomics.Lysine acetylation (Kac)1 is a well conserved, reversible post-translational modification (PTM) involved in multiple cellular processes (1). Acetylation is regulated by two classes of enzymes: lysine acetyltransferases (KATs) and histone deacetylases (HDACs) (2–4). This modification was originally identified as a nuclear event on histone proteins and has been long appreciated for its role in epigenetic and DNA-dependent processes. With the help of a growing number of large-scale acetylation studies, it has become evident that lysine acetylation is ubiquitous, also occurring on cytoplasmic and mitochondrial proteins and has a role in signaling, metabolism, and immunity (1, 4–6). Therefore, the examination of lysine acetylation on nonhistone proteins has gained a prominent role in PTM analysis.To date, the identification of large numbers of acetylation sites has been challenging because of the substoichiometric nature of this modification (7, 8). Additionally, global acetylation is generally less abundant than phosphorylation and ubiquitylation (1). The introduction of antibodies specific for lysine acetylation has significantly improved the ability to enrich and identify thousands of sites (9–14). A landmark study by Choudhary et al. used anti-Kac antibodies to globally map 3600 lysine acetylation sites on 1750 proteins, thereby demonstrating the feasibility of profiling the acetylome (10). A more recent study by Lundby et al. investigated the function and distribution of acetylation sites in 16 different rat tissues, and identified, in aggregate, 15,474 acetylation sites from 4541 proteins (12).Although anti-acetyl lysine antibodies have been a breakthrough for globally mapping acetylation sites (9–12), it remains a challenge to identify large numbers of lysine acetylation sites from a single sample, as is now routinely possible for phosphorylation and ubiquitylation (13, 15–18). To improve the depth-of-coverage in acetylation profiling experiments there is a clear need for (1) alternative anti-acetyl lysine antibodies with higher specificity, (2) optimized antibody usage parameters, and (3) robust proteomic workflows that permit low to moderate protein input. In this study, we describe a newly commercialized mixture of anti-Kac antibodies and detail a complete proteomic workflow for achieving unprecedented coverage of the acetylome from a single stable isotope labeling by amino acids in cell culture (SILAC) labeled sample as well as isobaric tags for relative and absolute quantitation (iTRAQ)- and tandem mass tag (TMT)-labeled samples. 相似文献
72.
Paula Pluta Pietro Roversi Ganeko Bernardo-Seisdedos Adriana L. Rojas Jonathan B. Cooper Shuang Gu Richard W. Pickersgill Oscar Millet 《Biochimica et Biophysica Acta (BBA)/General Subjects》2018,1862(9):1948-1955
Human porphobilinogen deaminase (PBGD), the third enzyme in the heme pathway, catalyzes four times a single reaction to convert porphobilinogen into hydroxymethylbilane. Remarkably, PBGD employs a single active site during the process, with a distinct yet chemically equivalent bond formed each time. The four intermediate complexes of the enzyme have been biochemically validated and they can be isolated but they have never been structurally characterized other than the apo- and holo-enzyme bound to the cofactor. We present crystal structures for two human PBGD intermediates: PBGD loaded with the cofactor and with the reaction intermediate containing two additional substrate pyrrole rings. These results, combined with SAXS and NMR experiments, allow us to propose a mechanism for the reaction progression that requires less structural rearrangements than previously suggested: the enzyme slides a flexible loop over the growing-product active site cavity. The structures and the mechanism proposed for this essential reaction explain how a set of missense mutations result in acute intermittent porphyria. 相似文献
73.
74.
The early-season dispersal of the overwintered apple blossom weevil, Anthonomus pomorum (L.) (Coleoptera: Curculionidae), is a crucial stage in the colonisation of dwarf apple orchards adjacent to forests. We have conducted release-recapture studies with 1700 to 4000 marked weevils at two orchard sites in Switzerland over 2 years to characterise the spatial and temporal pattern of the dispersal process. The dispersal and colonisation of orchards in spring by overwintered weevils is dependent upon the prevailing temperature.An orientated dispersal from the forest border to the centre of the orchard was observed consistently, irrespective of the angle of the apple tree rows with respect to the forest border or of climatic conditions. The average dispersal distance of the weevils was 19 m. Approximately one third of the weevil population remained on the first tree encountered, the remainder of the population moved over short distances mainly along the tree rows. This dispersal pattern led to a strong edge effect with higher numbers of weevils occurring at the edges adjoining the forests as compared to the centre of orchards. The relevance of these findings to population dynamics and management of the pest is discussed. 相似文献
75.
M Rigoulet L Fraisse R Ouhabi B Guérin E Fontaine X Leverve 《Biochimica et biophysica acta》1990,1018(1):91-97
After studying the effects of almitrine, a new kind of ATPase/ATP synthase inhibitor, on two kinds of isolated mammalian mitochondrion, we have observed that: (1) Almitrine inhibits oligomycin-sensitive ATPase; it decreases the ATP/O value of oxidative phosphorylations without any change in the magnitude of delta mu H+. (2) Almitrine increases the mechanistic H+/ATP stoichiometry of ATPase as shown by measuring either (i) the extent of potassium acetate and of potassium phosphate accumulation sustained by ATP utilisation, or (ii) the electrical charge/ATP (K+/ATP) ratio at steady-state of ATPase activity. (3) Rat liver mitochondria are at least 10-times more sensitive to almitrine than beef heart mitochondria. (4) The change in H+/ATP stoichiometry induced by almitrine depends on the magnitude of the flux through ATPase. The inhibitory effect of almitrine on ATPase/ATP synthase complex, as a consequence of such an H+/ATP stoichiometry change, is discussed. 相似文献
76.
The role of microbial biofilms in deterioration of space station candidate materials 总被引:1,自引:0,他引:1
Gu JD Roman M Esselman T Mitchell R 《International biodeterioration & biodegradation》1998,41(1):25-33
Formation of microbial biofilms on surfaces of a wide range of materials being considered as candidates for use on the International Space Station was investigated. The materials included a fibre-reinforced polymeric composite, an adhesive sealant, a polyimide insulation foam, teflon cable insulation, titanium, and an aliphatic polyurethane coating. They were exposed to a natural mixed population of bacteria under controlled conditions of temperature and relative humidity (RH). Biofilms formed on the surfaces of the materials at a wide range of temperatures and RHs. The biofilm population was dominated by Pseudomonas aeruginosa, Ochrobactrum anthropi, Alcaligenes denitrificans, Xanthomonas maltophila, and Vibrio harveyi. The biocide, diiodomethyl-p-tolyl sulfone, impregnated in the polyurethane coating, was ineffective against microbial colonization and growth. Degradation of the polyurethane coatings was monitored with electrochemical impedance spectroscopy (EIS). The impedance spectra indicated that microbial degradation of the coating occurred in several stages. The initial decreases in impedance were due to the transport of water and solutes into the polymeric matrices. Further decreases were a result of polymer degradation by microorganisms. Our data showed that these candidate materials for space application are susceptible to biofilm formation and subsequent degradation. Our study suggests that candidate materials for use in space missions need to be carefully evaluated for their susceptibility to microbial biofilm formation and biodegradation. 相似文献
77.
Wei Wang Kun Lv Ji‐Rui Wang Jing Zhou Jian‐Qiang Gu Guo‐Xin Zhou Zhi‐Hong Xu 《Entomological Research》2019,49(3):113-122
In the present study, partial sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene of 22 island populations of the springtail Homidia socia in the Thousand Island Lake were sequenced. Across all sequences, 37 haplotypes were identified for the 510‐bp mitochondrial (mt) DNA COI gene. Haplotype 2 was the most common, and was distributed in the most of the 22 island populations. Haplotype diversity ranged from 0.065 to 0.733, and the total genetic diversity was 0.56216. The genetic characteristics of the 22 island populations were analyzed using the fixation index and gene flow, with values of 0.00043–0.94900 and 0.02703–703.72540, respectively. Comparison between (island area and isolations) with population genetic diversity revealed that there were no significant correlations between them, except for a significant correlation between the number of haplotypes and island area. Mantel tests showed that there was no significant correlation between geographic distance and genetic distance among various groups. All the results indicated that there were no obvious relationships between island characteristics and the genetic diversity of the springtails. We consider that the low dispersal capacity of springtails and the island patches surrounded by water in the Thousand Island Lake are the major factors affecting the genetic diversity of H. socia. 相似文献
78.
Attention‐deficit hyperactivity disorder (ADHD) is one of the most common neuropsychiatric disorders in children and adolescents with high heritability. Evidence is accumulating that SLC1A3 may play a role in ADHD etiology. Therefore, a two‐stage case‐control study was conducted on 752 cases and 774 controls to explore the role of SLC1A3 in ADHD. Bioinformatic annotations and functional experiments were applied to reveal the potential biological mechanisms. Finally, SLC1A3 rs1049522 showed significant association with ADHD risk in two stages with CA genotype vs AA genotype, odds ratio (OR) = 0.694 (95% confidence interval, CI = 0.570‐0.844) and dominant model, OR = 0.749 (95% CI = 0.621‐0.904) in the combined stage. Besides, rs1049522 was found to be related to ADHD hyperactive/impulsive symptom, and rs1049522‐C showed increased SLC1A3 mRNA expression in the cerebellar cortex. Dual‐luciferase reporter assay further indicated that rs1049522‐C allele enhanced SLC1A3 expression by disrupting the hsa‐miR‐3171 binding site. In conclusion, SLC1A3 variant rs1049522 was implicated in ADHD susceptibility in a Chinese Han population probably by enhancing the SLC1A3 expression in a miRNA‐mediated manner. 相似文献
79.
Wei Yang Juan Gu Xuedong Wang Yueping Wang Mei Feng Daoping Zhou Jianmin Guo Ming Zhou 《Journal of cellular and molecular medicine》2019,23(5):3166-3177
This study aims to explore the mechanism of Circular RNA CDR1as implicating in regulating 5‐fluorouracil (5‐FU) chemosensitivity in breast cancer (BC) by competitively inhibiting miR‐7 to regulate CCNE1. Expressions of CDR1as and miR‐7 in 5‐FU‐resistant BC cells were determined by RT‐PCR. CCK‐8, colony formation assay and flow cytometry were applied to measure half maximal inhibitory concentration (IC50), 5‐Fu chemosensitivity and cell apoptosis. Western blot was used to detect the expressions of apoptosis‐related factors. CDR1as was elevated while miR‐7 was inhibited in 5‐FU‐resistant BC cells. Cells transfected with si‐CDR1as or miR‐7 mimic had decreased IC50 and colony formation rate, increased expressions of Bax/Bcl2 and cleaved‐Caspase‐3/Caspase‐3, indicating inhibition of CDR1as and overexpression of miR‐7 enhances the chemosensitity of 5‐FU‐resistant BC cells. Targetscan software indicates a binding site of CDR1as and miR‐7 and that CCNE1 is a target gene of miR‐7. miR‐7 can gather CDR1as in BC cells and can inhibit CCNE1. In comparison to si‐CDR1as group, CCNE1 was increased and chemosensitivity to 5‐Fu was suppressed in si‐CDR1as + miR‐7 inhibitor group. When compared with miR‐7 mimic group, CDR1as + miR‐7 mimic group had increased CCNE1 and decreased chemosensitivity to 5‐Fu. Nude mouse model of BC demonstrated that the growth of xenotransplanted tumour in si‐CDR1as + miR‐7 inhibitor group was faster than that in si‐CDR1as group. The tumour growth in CDR1as + miR‐7 mimic group was faster than that in miR‐7 mimic group. CDR1as may regulate chemosensitivity of 5‐FU‐resistant BC cells by inhibiting miR‐7 to regulate CCNE1. 相似文献
80.
Photosynthetic activity and proteomic analysis highlights the utilization of atmospheric CO2 by Ulva prolifera (Chlorophyta) for rapid growth 下载免费PDF全文
Free‐floating Ulva prolifera is one of the causative species of green tides. When green tides occur, massive mats of floating U. prolifera thalli accumulate rapidly in surface waters with daily growth rates as high as 56%. The upper thalli of the mats experience environmental changes such as the change in carbon source, high salinity, and desiccation. In this study, the photosynthetic performances of PSI and PSII in U. prolifera thalli exposed to different atmospheric carbon dioxide (CO2) levels were measured. Changes in photosynthesis within salinity treatments and dehydration under different CO2 concentrations were also analyzed. The results showed that PSII activity was enhanced as CO2 increased, suggesting that CO2 assimilation was enhanced and U. prolifera thalli can utilize CO2 in the atmosphere directly, even when under moderate stress. In addition, changes in the proteome of U. prolifera in response to salt stress were investigated. Stress‐tolerance proteins appeared to have an important role in the response to salinity stress, whereas the abundance of proteins related to metabolism showed no significant change under low salinity treatments. These findings may be one of the main reasons for the extremely high growth rate of free‐floating U. prolifera when green tides occur. 相似文献