首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12488篇
  免费   913篇
  国内免费   602篇
  2024年   12篇
  2023年   88篇
  2022年   238篇
  2021年   417篇
  2020年   336篇
  2019年   377篇
  2018年   415篇
  2017年   320篇
  2016年   492篇
  2015年   700篇
  2014年   829篇
  2013年   911篇
  2012年   1078篇
  2011年   1016篇
  2010年   603篇
  2009年   549篇
  2008年   661篇
  2007年   615篇
  2006年   558篇
  2005年   499篇
  2004年   422篇
  2003年   391篇
  2002年   315篇
  2001年   226篇
  2000年   224篇
  1999年   188篇
  1998年   117篇
  1997年   118篇
  1996年   121篇
  1995年   113篇
  1994年   93篇
  1993年   88篇
  1992年   138篇
  1991年   114篇
  1990年   81篇
  1989年   86篇
  1988年   75篇
  1987年   57篇
  1986年   44篇
  1985年   56篇
  1984年   39篇
  1983年   27篇
  1982年   22篇
  1981年   11篇
  1979年   10篇
  1978年   10篇
  1976年   11篇
  1971年   10篇
  1970年   10篇
  1966年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
202.
203.
204.
Trichoderma harzianum is a plant-beneficial fungus that secretes small cysteine-rich proteins that induce plant defense responses; however, the molecular mechanism involved in this induction is largely unknown.Here, we report that the class II hydrophobin Th Hyd1 acts as an elicitor of induced systemic resistance(ISR) in plants. Immunogold labeling and immunofluorescence revealed Th Hyd1 localized on maize(Zea mays) root cell plasma membranes. To identify host plant protein interactors of Hyd1, we screened a maize B73 root c DNA library. Th Hyd1 interacted directly with ubiquilin1-like(UBL). Furthermore, the N-terminal fragment of UBL was primarily responsible for binding with Hyd1 and the eight-cysteine amino acid of Hyd1 participated in the protein-protein interactions. Hyd1 from T. harzianum(Thhyd1) and ubl from maize were co-expressed in Arabidopsis thaliana, they synergistically promoted plant resistance against Botrytis cinerea. RNA-sequencing analysis of global gene expression in maize leaves 24 h after spraying with Curvularia lunata spore suspension showed that Thhyd1-induced systemic resistance was primarily associated with brassinosteroid signaling, likely mediated through BAK1. Jasmonate/ethylene(JA/ET)signaling was also involved to some extent in this response. Our results suggest that the Hyd1-UBL axis might play a key role in inducing systemic resistance as a result of Trichoderma-plant interactions.  相似文献   
205.
Imitation Switch (ISWI) chromatin remodelers are known to function in diverse multi‐subunit complexes in yeast and animals. However, the constitution and function of ISWI complexes in Arabidopsis thaliana remain unclear. In this study, we identified forkhead‐associated domain 2 (FHA2) as a plant‐specific subunit of an ISWI chromatin‐remodeling complex in Arabidopsis. By in vivo and in vitro analyses, we demonstrated that FHA2 directly binds to RLT1 and RLT2, two redundant subunits of the ISWI complex in Arabidopsis. The stamen filament is shorter in the fha2 and rlt1/2 mutants than in the wild type, whereas their pistil lengths are comparable. The shorter filament, which is due to reduced cell size, results in insufficient pollination and reduced fertility. The rlt1/2 mutant shows an early‐flowering phenotype, whereas the phenotype is not shared by the fha2 mutant. Consistent with the functional specificity of FHA2, our RNA‐seq analysis indicated that the fha2 mutant affects a subset of RLT1/2‐regulated genes that does not include genes involved in the regulation of flowering time. This study demonstrates that FHA2 functions as a previously uncharacterized subunit of the Arabidopsis ISWI complex and is exclusively involved in regulating stamen development and plant fertility.  相似文献   
206.
Root stem cell niche (SCN) consists of a quiescent center (QC) and surrounding stem cells. Disrupted symplastic communication leads to loss of stemness in the whole SCN. Several SCN regulators were reported to move between cells for SCN maintenance. However, single mutant of these regulators is insufficient to abolish QC stemness despite the high differentiation rate in surrounding stem cells. To dissect the mechanism behind such distinct stemness in SCN, we combined the mis‐expression strategy with pWOX5:icals3m system in which QC is symplastically isolated. We found the starch accumulation in QC could be synergistically repressed by WUSCHEL‐RELATED HOMEOBOX 5 (WOX5), SHORT‐ROOT (SHR), SCARCROW (SCR), and PLETHORA (PLT). Like PLTs, other core regulators also exhibited dimorphic functions by inhibiting differentiation at a higher dose while promoting cell division at a low protein level. Being located in the center of the intersected expression zones, QC cells receive the highest level of core regulators, forming the most robust stemness within SCN. WUSCHEL‐RELATED HOMEOBOX 5 was sufficient to activate PLT1/2 expression, contributing to the QC‐enriched PLTs. Our results provide experimental evidence supporting the long‐standing hypothesis that the combination of spatial expression, synergistic function and dosage effect of core regulators result in spatially distinct stemness in SCN.  相似文献   
207.
208.
Ovarian cancer (OvCa) causes the highest mortality among all gynaecologic cancers. A large number of mRNA‐ or miRNA‐based signatures were identified for OvCa patient prognosis. However, the comprehensive analysis of function‐level prognostic signatures is currently not considered in OvCa. In the present study, we respectively inferred subpathway activities from mRNA and miRNA levels based on high‐throughput expression profiles and reconstructed subpathways. Firstly, the activities of two tumour pathways were calculated and the difference between normal and tumour samples were analysed using multiple tumour types. Then, we calculated subpathway activities for OvCa based on the expression profiles from both mRNA and miRNA levels. Furthermore, based on these subpathway activity matrices, we performed bootstrap analysis to obtain sub‐training sets and utilized univariate method to identify robust OvCa prognostic subpathways. A comprehensive comparison of subpathway results between these two levels was performed. As a result, we observed subpathway mutual exclusion trend between the levels of mRNA and miRNA, which indicated the necessary of combining mRNA‐miRNA levels. Finally, by using ICGC data as testing sets, we utilized two strategies to verify survival predictive power of the mRNA‐miRNA combined subpathway signatures and performed comparisons with results from individual levels. It was confirmed that our framework displayed application to identify robust and efficient prognostic signatures for OvCa, and the combined signatures indeed exhibited advantages over individual ones. In the study, we took a step forward in relevant novel integrated functional signatures for OvCa prognosis.  相似文献   
209.
Interleukin‐10 (IL‐10) displays well‐documented anti‐inflammatory effects, but its effects on osteoblast differentiation have not been investigated. In this study, we found IL‐10 negatively regulates microRNA‐7025‐5p (miR‐7025‐5p), the down‐regulation of which enhances osteoblast differentiation. Furthermore, through luciferase reporter assays, we found evidence that insulin‐like growth factor 1 receptor (IGF1R) is a miR‐7025‐5p target gene that positively regulates osteoblast differentiation. In vivo studies indicated that the pre‐injection of IL‐10 leads to increased bone formation, while agomiR‐7025‐5p injection delays fracture healing. Taken together, these results indicate that IL‐10 induces osteoblast differentiation via regulation of the miR‐7025‐5p/IGF1R axis. IL‐10 therefore represents a promising therapeutic strategy to promote fracture healing.  相似文献   
210.
Psoralea corylifolia (P corylifolia) has been popularly applied in traditional Chinese medicine decoction for treating osteoporosis and promoting fracture healing since centuries ago. However, the bioactive natural components remain unknown. In this study, applying comprehensive two‐dimensional cell membrane chromatographic/C18 column/time‐of‐flight mass spectrometry (2D CMC/C18 column/TOFMS) system, neobavaisoflavone (NBIF), for the first time, was identified for the bioaffinity with RAW 264.7 cells membranes from the extracts of P corylifolia. Here, we revealed that NBIF inhibited RANKL‐mediated osteoclastogenesis in bone marrow monocytes (BMMCs) and RAW264.7 cells dose dependently at the early stage. Moreover, NBIF inhibited osteoclasts function demonstrated by actin ring formation assay and pit‐formation assay. With regard to the underlying molecular mechanism, co‐immunoprecipitation showed that both the interactions of RANK with TRAF6 and with c‐Src were disrupted. In addition, NBIF inhibited the phosphorylation of P50, P65, IκB in NF‐κB pathway, ERK, JNK, P38 in MAPKs pathway, AKT in Akt pathway, accompanied with a blockade of calcium oscillation and inactivation of nuclear translocation of nuclear factor of activated T cells cytoplasmic 1 (NFATc1). In vivo, NBIF inhibited osteoclastogenesis, promoted osteogenesis and ameliorated bone loss in ovariectomized mice. In summary, P corylifolia‐derived NBIF inhibited RANKL‐mediated osteoclastogenesis by suppressing the recruitment of TRAF6 and c‐Src to RANK, inactivating NF‐κB, MAPKs, and Akt signalling pathways and inhibiting calcium oscillation and NFATc1 translocation. NBIF might serve as a promising candidate for the treatment of osteoclast‐associated osteopenic diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号