首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9221篇
  免费   642篇
  国内免费   500篇
  2024年   10篇
  2023年   81篇
  2022年   194篇
  2021年   341篇
  2020年   242篇
  2019年   270篇
  2018年   290篇
  2017年   234篇
  2016年   342篇
  2015年   482篇
  2014年   605篇
  2013年   659篇
  2012年   764篇
  2011年   724篇
  2010年   424篇
  2009年   383篇
  2008年   435篇
  2007年   431篇
  2006年   371篇
  2005年   369篇
  2004年   299篇
  2003年   303篇
  2002年   246篇
  2001年   195篇
  2000年   194篇
  1999年   162篇
  1998年   111篇
  1997年   102篇
  1996年   104篇
  1995年   101篇
  1994年   78篇
  1993年   78篇
  1992年   127篇
  1991年   101篇
  1990年   72篇
  1989年   72篇
  1988年   66篇
  1987年   49篇
  1986年   41篇
  1985年   53篇
  1984年   33篇
  1983年   24篇
  1982年   19篇
  1981年   10篇
  1979年   10篇
  1978年   6篇
  1977年   7篇
  1971年   7篇
  1970年   7篇
  1966年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Preferential apoptosis of HIV-1-specific CD4+ T cells   总被引:4,自引:0,他引:4  
In contrast to other viral infections such as CMV, circulating frequencies of HIV-1-specific CD4+ T cells in peripheral blood are quantitatively diminished in the majority of HIV-1-infected individuals. One mechanism for this quantitative defect is preferential infection of HIV-1-specific CD4+ T cells, although <10% of HIV-1-specific CD4+ T cells are infected. Apoptosis has been proposed as an important contributor to the pathogenesis of CD4+ T cell depletion in HIV/AIDS. We show here that, within HIV-1-infected individuals, a greater proportion of ex vivo HIV-1-specific CD4+ T cells undergo apoptosis compared with CMV-specific CD4+ T cells (45 vs 7.4%, respectively, p < 0.05, in chronic progressors). The degree of apoptosis within HIV-1-specific CD4+ T cells correlates with viral load and disease progression, and highly active antiretroviral therapy abrogates these differences. The data support a mechanism for apoptosis in these cells similar to that found in activation-induced apoptosis through the TCR, resulting in oxygen-free radical production, mitochondrial damage, and caspase-9 activation. That HIV-1 proteins can also directly enhance activation-induced apoptosis supports a mechanism for a preferential induction of apoptosis of HIV-1-specific CD4+ T cells, which contributes to a loss of immunological control of HIV-1 replication.  相似文献   
982.
Gu G  Wei G  Du Y 《Carbohydrate research》2004,339(6):1155-1162
An efficient and convergent synthesis of a regioselectively 6(V)-sulfated mannopentasaccharide derivative 1c, octyl 6-O-sulfo-alpha-D-mannopyranosyl-(1-->3)-alpha-D-mannopyranosyl-(1-->3)-alpha-d-mannopyranosyl-(1-->3)-alpha-D-mannopyranosyl-(1-->2)-alpha-D-mannopyranoside, was achieved by a '3 + 2' strategy. The target was designed to mimic the promising anticancer agent PI-88 and was obtained from the building blocks, octyl 3,4,6-tri-O-benzoyl-alpha-D-mannopyranoside, allyl 2,4,6-tri-O-benzoyl-3-O-(4-methoxybenzyl)-alpha-D-mannopyranoside, and 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (11), under TMSOTf-catalyzed glycosylation conditions. Compound 1c displays a mild anti-angiogenic activity based on a chorioallantoic membrane (CAM) model study.  相似文献   
983.
The factors and mechanisms regulating assembly of intermediate filament (IF) proteins to produce filaments with their characteristic 10 nm diameter are not fully understood. All IF proteins contain a central rod domain flanked by variable head and tail domains. To elucidate the role that different domains of IF proteins play in filament assembly, we used negative staining and electron microscopy (EM) to study the in vitro assembly properties of purified bacterially expressed IF proteins, in which specific domains of the proteins were either mutated or swapped between a cytoplasmic (mouse neurofilament-light (NF-L) subunit) and nuclear intermediate filament protein (human lamin A). Our results indicate that filament formation is profoundly influenced by the composition of the assembly buffer. Wild type (wt) mouse NF-L formed 10 nm filaments in assembly buffer containing 175 mM NaCl, whereas a mutant deleted of 18 NH2-terminal amino acids failed to assemble under similar conditions. Instead, the mutant assembled efficiently in buffers containing CaCl2 > or = 6 mM forming filaments that were 10 times longer than those formed by wt NF-L, although their diameter was significantly smaller (6-7 nm). These results suggest that the 18 NH2-terminal sequence of NF-L might serve two functions, to inhibit filament elongation and to promote lateral association of NF-L subunits. We also demonstrate that lengthening of the NF-L rod domain, by inserting a 42 aa sequence unique to nuclear IF proteins, does not compromise filament assembly in any noticeable way. Our results suggests that the known inability of nuclear lamin proteins to assemble into 10 nm filaments in vitro cannot derive solely from their longer rod domain. Finally, we demonstrate that the head domain of lamin A can substitute for that of NF-L in filament assembly, whereas substitution of both the head and tail domains of lamins for those of NF-L compromises assembly. Therefore, the effect of lamin A "tail" domain alone, or the synergistic effect of lamin "head" and the "tail" domains together, interferes with assembly into 10-nm filaments.  相似文献   
984.
Wen CJ  Xue B  Qin WX  Yu M  Zhang MY  Zhao DH  Gao X  Gu JR  Li CJ 《FEBS letters》2004,564(1-2):171-176
hNRAGE, a neurotrophin receptor p75 interacting MAGE homologue, is cloned from a human placenta cDNA library. hNRAGE can inhibit the colony formation of and arrest cell proliferation at the G1/S and G2/M stages in hNRAGE overexpressing cells. Interestingly, hNRAGE also increases the p53 protein level as well as its phosphorylation (Ser392). Further studies demonstrated that hNRAGE does not affect the proliferation of mouse p53-/- embryonic fibroblasts, suggesting that p53 function is required for hNRAGE induced cell cycle arrest. Moreover, the cell cycle inhibiting protein p21(WAF) is induced by hNRAGE in a p53 dependent manner. The data provide original evidence that hNRAGE arrests cell growth through a p53 dependent pathway.  相似文献   
985.
Gu XY  Kianian SF  Foley ME 《Genetics》2004,166(3):1503-1516
Weedy rice has much stronger seed dormancy than cultivated rice. A wild-like weedy strain SS18-2 was selected to investigate the genetic architecture underlying seed dormancy, a critical adaptive trait in plants. A framework genetic map covering the rice genome was constructed on the basis of 156 BC(1) [EM93-1 (nondormant breeding line)//EM93-1/SS18-2] individuals. The mapping population was replicated using a split-tiller technique to control and better estimate the environmental variation. Dormancy was determined by germination of seeds after 1, 11, and 21 days of after-ripening (DAR). Six dormancy QTL, designated as qSD(S)-4, -6, -7-1, -7-2, -8, and -12, were identified. The locus qSD(S)-7-1 was tightly linked to the red pericarp color gene Rc. A QTL x DAR interaction was detected for qSD(S)-12, the locus with the largest main effect at 1, 11, and 21 DAR (R(2) = 0.14, 0.24, and 0.20, respectively). Two, three, and four orders of epistases were detected with four, six, and six QTL, respectively. The higher-order epistases strongly suggest the presence of genetically complex networks in the regulation of variation for seed dormancy in natural populations and make it critical to select for a favorable combination of alleles at multiple loci in positional cloning of a target dormancy gene.  相似文献   
986.
The protein TA0175 has a large number of sequence homologues, most of which are annotated as unknown and a few as belonging to the haloacid dehalogenase superfamily, but has no known biological function. Using a combination of amino acid sequence analysis, three-dimensional crystal structure information, and kinetic analysis, we have characterized TA0175 as phosphoglycolate phosphatase from Thermoplasma acidophilum. The crystal structure of TA0175 revealed two distinct domains, a larger core domain and a smaller cap domain. The large domain is composed of a centrally located five-stranded parallel beta-sheet with strand order S10, S9, S8, S1, S2 and a small beta-hairpin, strands S3 and S4. This central sheet is flanked by a set of three alpha-helices on one side and two helices on the other. The smaller domain is composed of an open faced beta-sandwich represented by three antiparallel beta-strands, S5, S6, and S7, flanked by two oppositely oriented alpha-helices, H3 and H4. The topology of the large domain is conserved; however, structural variation is observed in the smaller domain among the different functional classes of the haloacid dehalogenase superfamily. Enzymatic assays on TA0175 revealed that this enzyme catalyzed the dephosphorylation of phosphoglycolate in vitro with similar kinetic properties seen for eukaryotic phosphoglycolate phosphatase. Activation by divalent cations, especially Mg2+, and competitive inhibition behavior with Cl- ions are similar between TA0175 and phosphoglycolate phosphatase. The experimental evidence presented for TA0175 is indicative of phosphoglycolate phosphatase.  相似文献   
987.
Wnts are morphogens with well recognized functions during embryogenesis. Aberrant Wnt signaling has been demonstrated to be important in colorectal carcinogenesis. However, the role of Wnt in regulating normal intestinal epithelial cell proliferation is not well established. Here we determine that Wnt11 is expressed throughout the mouse intestinal tract including the epithelial cells. Conditioned media from Wnt11-secreting cells stimulated proliferation and migration of IEC6 intestinal epithelial cells. Co-culture of Wnt11-secreting cells with IEC6 cells resulted in morphological transformation of the latter as evidenced by the formation of foci, a condition also accomplished by stable transfection of IEC6 with a Wnt11-expressing construct. Treatment of IEC6 cells with Wnt11 conditioned media failed to induce nuclear translocation of beta-catenin but led to increased activities of protein kinase C and Ca(2+)/calmodulin-dependent protein kinase II. Inhibition of protein kinase C resulted in a decreased ability of Wnt11 to induce foci formation in IEC6 cells. Finally, E-cadherin was redistributed in Wnt11-treated IEC6 cells, resulting in diminished E-cadherin-mediated cell-cell contact. We conclude that Wnt11 stimulates proliferation, migration, cytoskeletal rearrangement, and contact-independent growth of IEC6 cells by a beta-catenin-independent mechanism. These findings may help understand the molecular mechanisms that regulate proliferation and migration of intestinal epithelial cells.  相似文献   
988.
Protein-tyrosine phosphatase 1B (PTP-1B) is the prototypic tyrosine phosphatase whose function in insulin signaling and metabolism is well established. Although the role of PTP-1B in dephosphorylating various cell surface receptor tyrosine kinases is clear, the mechanisms by which it modulates receptor function from the endoplasmic reticulum (ER) remains an enigma. Here, we provide evidence that PTP-1B has an essential function in regulating the unfolded protein response in the ER compartment. The absence of PTP-1B caused impaired ER stress-induced IRE1 signaling. More specifically, JNK activation, XBP-1 splicing, and EDEM (ER degradation-enhancing alpha-mannosidase-like protein) gene induction, as well as ER stress-induced apoptosis, were attenuated in PTP-1B knock-out mouse embryonic fibroblasts in response to two ER stressors, tunicamycin and azetidine-2 carboxylic acid. We demonstrate that PTP-1B is not just a passive resident of the ER but on the contrary has an essential role in potentiating IRE1-mediated ER stress signaling pathways.  相似文献   
989.
Methionine aminopeptidase (MetAP) catalyzes the removal of methionine from newly synthesized polypeptides. MetAP carries out this cleavage with high precision, and Met is the only natural amino acid residue at the N terminus that is accepted, although type I and type II MetAPs use two different sets of residues to form the hydrophobic S1 site. Characteristics of the S1 binding pocket in type I MetAP were investigated by systematic mutation of each of the seven S1 residues in Escherichia coli MetAP type I (EcMetAP1) and human MetAP type I (HsMetAP1). We found that Tyr-65 and Trp-221 in EcMetAP1, as well as the corresponding residues Phe-197 and Trp-352 in HsMetAP1, were essential for the hydrolysis of a thiopeptolide substrate, Met-S-Gly-Phe. Mutation of Phe-191 to Ala in HsMetAP1 caused inactivity in contrast to the full activity of EcMetAP1(Y62A), which may suggest a subtle difference between the two type I enzymes. The more striking finding is that mutation of Cys-70 in EcMetAP1 or Cys-202 in HsMetAP1 opens up the S1 pocket. The thiopeptolides Leu-S-Gly-Phe and Phe-S-Gly-Phe, with previously unacceptable Leu or Phe as the N-terminal residue, became efficient substrates of EcMetAP1(C70A) and HsMetAP1(C202A). The relaxed specificity shown in these S1 site mutants for the N-terminal residues was confirmed by hydrolysis of peptide substrates and inhibition by reaction products. The structural features at the enzyme active site will be useful information for designing specific MetAP inhibitors for therapeutic applications.  相似文献   
990.
The phosphatidylinositol 4,5-bisphosphate (PIP(2))-sensitive inward rectifier channel Kir2.1 was expressed in Drosophila photoreceptors and used to monitor in vivo PIP(2) levels. Since the wild-type (WT) Kir2.1 channel appeared to be saturated by the prevailing PIP(2) concentration, we made a single amino acid substitution (R228Q), which reduced the effective affinity for PIP(2) and yielded channels generating currents proportional to the PIP(2) levels relevant for phototransduction. To isolate Kir2.1 currents, recordings were made from mutants lacking both classes of light-sensitive transient receptor potential channels (TRP and TRPL). Light resulted in the effective depletion of PIP(2) by phospholipase C (PLC) in approximately three or four microvilli per absorbed photon at rates exceeding approximately 150% of total microvillar phosphoinositides per second. PIP(2) was resynthesized with a half-time of approximately 50 s. When PIP(2) resynthesis was prevented by depriving the cell of ATP, the Kir current spontaneously decayed at maximal rates representing a loss of approximately 40% loss of total PIP(2) per minute. This loss was attributed primarily to basal PLC activity, because it was greatly decreased in norpA mutants lacking PLC. We tried to confirm this by using the PLC inhibitor U73122; however, this was found to act as a novel inhibitor of the Kir2.1 channel. PIP(2) levels were reduced approximately 5-fold in the diacylglycerol kinase mutant (rdgA), but basal PLC activity was still pronounced, consistent with the suggestion that raised diacylglycerol levels are responsible for the constitutive TRP channel activity characteristic of this mutant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号