首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1539篇
  免费   72篇
  国内免费   1篇
  2023年   4篇
  2022年   13篇
  2021年   33篇
  2020年   16篇
  2019年   30篇
  2018年   52篇
  2017年   42篇
  2016年   59篇
  2015年   97篇
  2014年   99篇
  2013年   111篇
  2012年   119篇
  2011年   131篇
  2010年   83篇
  2009年   47篇
  2008年   105篇
  2007年   86篇
  2006年   88篇
  2005年   89篇
  2004年   74篇
  2003年   58篇
  2002年   48篇
  2001年   19篇
  2000年   12篇
  1999年   7篇
  1998年   10篇
  1997年   5篇
  1996年   2篇
  1995年   7篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   6篇
  1990年   2篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   6篇
  1981年   7篇
  1979年   2篇
  1977年   5篇
  1975年   1篇
  1974年   1篇
排序方式: 共有1612条查询结果,搜索用时 15 毫秒
141.
Different types of plant pathogens may cause enormous losses in agriculture and also have an ecological impact in the nature. On molecular level, disease resistance is acquired through the action of tightly interconnected signaling pathways that may induce highly specific immune reactions in plant cells. Controlled protein dephosphorylation through protein phosphatase 2A activity is emerging as a crucial mechanism that regulates diverse signaling events in plants. PP2A is predominantly trimeric, and consists of a catalytic subunit, a scaffold subunit A, and a variable regulatory subunit B, which determines the target specificity of the PP2A holoenzyme.1 Recently, we uncovered a specific role for a regulatory subunit B’γ of PP2A as a negative regulator of immune reactions in Arabidopsis thaliana (hereafter Arabidopsis).2 Knock-down pp2a-b’γ mutants show constitutive activation of defense related genes, imbalanced antioxidant metabolism and premature disintegration of chloroplasts upon ageing. Proteomic analysis of soluble leaf extracts further revealed that the constitutive defense response in pp2a-b’γ leaves associates with increased levels of Cu/Zn superoxide dismutase, aconitase as well as components of the methionine-salvage pathway, suggesting PP2A-B’γ modulates methionine metabolism in leaves.  相似文献   
142.
Damage to cardiac contractile proteins during ischemia followed by reperfusion is mediated by reactive oxygen species such as peroxynitrite (ONOO), resulting in impairment of cardiac systolic function. However, the pathophysiology of systolic dysfunction during ischemia only, before reperfusion, remains unclear. We suggest that increased ONOO generation during ischemia leads to nitration/nitrosylation of myosin light chain 1 (MLC1) and its increased degradation by matrix metalloproteinase-2 (MMP-2), which leads to impairment of cardiomyocyte contractility. We also postulate that inhibition of ONOO action by use of a ONOO scavenger results in improved recovery from ischemic injury. Isolated rat cardiomyocytes were subjected to 15 and 60 min. of simulated ischemia. Intact MLC1 levels, measured by 2D gel electrophoresis and immunoblot, were shown to decrease with increasing duration of ischemia, which correlated with increasing levels of nitrotyrosine and nitrite/nitrate. In vitro degradation of human recombinant MLC1 by MMP-2 increased after ONOO exposure of MLC1 in a concentration-dependent manner. Mass spectrometry analysis of ischemic rat cardiomyocyte MLC1 showed nitration of tyrosines 78 and 190, as well as of corresponding tyrosines 73 and 185 within recombinant human cardiac MLC1 treated with ONOO. Recombinant human cardiac MLC1 was additionally nitrosylated at cysteine 67 and 76 corresponding to cysteine 81 of rat MLC1. Here we show that increased ONOO production during ischemia induces MLC1 nitration/nitrosylation leading to its increased degradation by MMP-2. Inhibition of MLC1 nitration/nitrosylation during ischemia by the ONOO scavenger FeTPPS (5,10,15,20-tetrakis-[4-sulfonatophenyl]-porphyrinato-iron[III]), or inhition of MMP-2 activity with phenanthroline, provides an effective protection of cardiomyocyte contractility.  相似文献   
143.
The oxidative folding of small, cysteine‐rich peptides to selectively achieve the native disulfide bond connectivities is critical for discovery and structure‐function studies of many bioactive peptides. As the propensity to acquire the native conformation greatly depends on the peptide sequence, numerous empirical oxidation methods are employed. The context‐dependent optimization of these methods has thus far precluded a generalized oxidative folding protocol, in particular for peptides containing more than two disulfides. Herein, we compare the efficacy of optimized solution‐phase and polymer‐supported oxidation methods using three disulfide‐bridged conotoxins, namely µ‐SIIIA, µ‐KIIIA and ω‐GVIA. The use of diselenide bridges as proxies for disulfide bridges is also evaluated. We propose the ClearOx‐assisted oxidation of selenopeptides as a fairly generalized oxidative folding protocol. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
144.
In the present study, we reinvestigate the diversity of Trichoderma in Poland utilizing a combination of morphological and molecular/phylogenetic methods. A total of 170 isolates were collected from six different substrata at 49 sites in Poland. These were divided among 14 taxa as follows: 110 of 170 Trichoderma isolates were identified to the species level by the analysis of their ITS1, ITS2 rDNA sequences as: T. harzianum (43 isolates), T. aggressivum (35), T. citrinoviride (11), T. hamatum (9), T. virens (6), T. longibrachiatum (4), T. polysporum (1), and T. tomentosum (1); 60 isolates belonging to the Viride clade were identified based on a fragment of the translation-elongation factor 1-alpha (tef1) gene as: T. atroviride (20 isolates), T. gamsii (2), T. koningii (17), T. viridescens (13), T. viride (7), and T. koningiopsis (1). Identifications were made using the BLAST interface in TrichOKEY and TrichoBLAST (). The most diverse substrata were soil (nine species per 22 isolates) and decaying wood (nine species per 75 isolates). The most abundant species (25%) isolated from all substrata was T. harzianum.  相似文献   
145.
The transient receptor potential (TRP) multigene superfamily encodes integral membrane proteins that function as ion channels. Members of this family are conserved in yeast, invertebrates and vertebrates. The TRP family is subdivided into seven subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), TRPA (ankyrin) and TRPN (NOMPC-like); the latter is found only in invertebrates and fish. TRP ion channels are widely expressed in many different tissues and cell types, where they are involved in diverse physiological processes, such as sensation of different stimuli or ion homeostasis. Most TRPs are non-selective cation channels, only few are highly Ca2+ selective, some are even permeable for highly hydrated Mg2+ ions. This channel family shows a variety of gating mechanisms, with modes of activation ranging from ligand binding, voltage and changes in temperature to covalent modifications of nucleophilic residues. Activated TRP channels cause depolarization of the cellular membrane, which in turn activates voltage-dependent ion channels, resulting in a change of intracellular Ca2+ concentration; they serve as gatekeeper for transcellular transport of several cations (such as Ca2+ and Mg2+), and are required for the function of intracellular organelles (such as endosomes and lysosomes). Because of their function as intracellular Ca2+ release channels, they have an important regulatory role in cellular organelles. Mutations in several TRP genes have been implicated in diverse pathological states, including neurodegenerative disorders, skeletal dysplasia, kidney disorders and pain, and ongoing research may help find new therapies for treatments of related diseases.  相似文献   
146.
7C8 is a mouse monoclonal antibody specific for the third hypervariable region (V3) of the human immunodeficiency virus type 2 (HIV-2)-associated protein gp125. The three-dimensional crystal structure of the Fab fragment of 7C8, determined to 2.7 Å resolution, reveals a deep and narrow antigen-binding cleft with architecture appropriate for an elongated epitope. The highly hydrophobic cleft is bordered on one side by the negatively charged second complementarity determining region (CDR2) and the unusually long positively charged CDR3 of the heavy chain and, on the other side, by the CDR1 of the light chain. Analysis of 7C8 in complex with molecular models of monomeric and trimeric gp125 highlights the importance of a conserved stretch of residues FHSQ that is localized centrally on the V3 region of gp125. Furthermore, modeling also indicates that the Fab fragment neutralizes the virus by sterically impairing subsequent engagement of the gp125 trimer with the co-receptor on the target cell.  相似文献   
147.
148.
149.
Recent studies indicated that bioluminescence of the marine bacterium Vibrio harveyi may both stimulate DNA repair and contribute to detoxification of deleterious oxygen derivatives. Therefore, it was also proposed that these reactions can be considered biological roles of bacterial luminescence and might act as evolutionary drives in development of luminous systems. However, experimental evidence for the physiological role of luciferase in protection of cells against oxidative stress has been demonstrated only in one bacterial species, raising the question whether this is a specific or a more general phenomenon. Here we demonstrate that in the presence of various oxidants (hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide and ferrous ions) growth of dark mutants of different strains of Vibrio fischeri and Photobacterium leiognathi is impaired relative to wild-type bacteria, though to various extents. Deleterious effects of oxidants on the mutants could be reduced (with different efficiency) by addition of antioxidants, A-TEMPO or 4OH-TEMPO. These results support the hypotheses that (1) activities of bacterial luciferases may detoxify deleterious oxygen derivatives, and (2) significantly different efficiencies of this reaction are characteristic for various luciferases.  相似文献   
150.
PNH is a rare clonal disorder of hematopoietic stem cells, therefore all blood cells lineages are involved. The main feature is an increased sensitivity of erythrocytes to complement-mediated cell lysis due to deficiency of membrane-bound GPI (glycosylphosphatidylinositol)-anchored proteins which normally function as inhibitors of reactive hemolysis. In the present study, we performed flow cytometric analysis using monoclonal antibodies against CD55 and CD59 for the detection of PNH-type clone in the blood of 50 patients (28 females and 22 males, age range 7-67 yrs). In one patient only we found a large population (95%) of granulocytes with decreased expression of both CD55 and CD59 molecules (type I PNH) and in two others with partial loss of CD55 expression (type II PNH). The expression was determined chiefly on granulocytes which in the control group showed reliable and high expression of CD55 and CD59.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号