首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1247篇
  免费   61篇
  国内免费   1篇
  2023年   2篇
  2022年   12篇
  2021年   22篇
  2020年   11篇
  2019年   22篇
  2018年   37篇
  2017年   28篇
  2016年   45篇
  2015年   81篇
  2014年   80篇
  2013年   92篇
  2012年   92篇
  2011年   108篇
  2010年   68篇
  2009年   34篇
  2008年   93篇
  2007年   76篇
  2006年   76篇
  2005年   86篇
  2004年   69篇
  2003年   56篇
  2002年   47篇
  2001年   13篇
  2000年   6篇
  1999年   4篇
  1998年   11篇
  1997年   5篇
  1996年   2篇
  1995年   7篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有1309条查询结果,搜索用时 875 毫秒
121.
122.
Recent studies indicated that bioluminescence of the marine bacterium Vibrio harveyi may both stimulate DNA repair and contribute to detoxification of deleterious oxygen derivatives. Therefore, it was also proposed that these reactions can be considered biological roles of bacterial luminescence and might act as evolutionary drives in development of luminous systems. However, experimental evidence for the physiological role of luciferase in protection of cells against oxidative stress has been demonstrated only in one bacterial species, raising the question whether this is a specific or a more general phenomenon. Here we demonstrate that in the presence of various oxidants (hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide and ferrous ions) growth of dark mutants of different strains of Vibrio fischeri and Photobacterium leiognathi is impaired relative to wild-type bacteria, though to various extents. Deleterious effects of oxidants on the mutants could be reduced (with different efficiency) by addition of antioxidants, A-TEMPO or 4OH-TEMPO. These results support the hypotheses that (1) activities of bacterial luciferases may detoxify deleterious oxygen derivatives, and (2) significantly different efficiencies of this reaction are characteristic for various luciferases.  相似文献   
123.
PNH is a rare clonal disorder of hematopoietic stem cells, therefore all blood cells lineages are involved. The main feature is an increased sensitivity of erythrocytes to complement-mediated cell lysis due to deficiency of membrane-bound GPI (glycosylphosphatidylinositol)-anchored proteins which normally function as inhibitors of reactive hemolysis. In the present study, we performed flow cytometric analysis using monoclonal antibodies against CD55 and CD59 for the detection of PNH-type clone in the blood of 50 patients (28 females and 22 males, age range 7-67 yrs). In one patient only we found a large population (95%) of granulocytes with decreased expression of both CD55 and CD59 molecules (type I PNH) and in two others with partial loss of CD55 expression (type II PNH). The expression was determined chiefly on granulocytes which in the control group showed reliable and high expression of CD55 and CD59.  相似文献   
124.
The oxidative folding pathway of leech carboxypeptidase inhibitor (LCI; four disulfide bonds) proceeds through the formation of two major intermediates (III-A and III-B) that contain three native disulfide bonds and act as strong kinetic traps in the folding process. The III-B intermediate lacks the Cys19-Cys43 disulfide bond that links the beta-sheet core with the alpha-helix in wild-type LCI. Here, an analog of this intermediate was constructed by replacing Cys19 and Cys43 with alanine residues. Its oxidative folding follows a rapid sequential flow through one, two, and three disulfide species to reach the native form; the low accumulation of two disulfide intermediates and three disulfide (scrambled) isomers accounts for a highly efficient reaction. The three-dimensional structure of this analog, alone and in complex with carboxypeptidase A (CPA), was determined by X-ray crystallography at 2.2A resolution. Its overall structure is very similar to that of wild-type LCI, although the residues in the region adjacent to the mutation sites show an increased flexibility, which is strongly reduced upon binding to CPA. The structure of the complex also demonstrates that the analog and the wild-type LCI bind to the enzyme in the same manner, as expected by their inhibitory capabilities, which were similar for all enzymes tested. Equilibrium unfolding experiments showed that this mutant is destabilized by approximately 1.5 kcal mol(-1) (40%) relative to the wild-type protein. Together, the data indicate that the fourth disulfide bond provides LCI with both high stability and structural specificity.  相似文献   
125.
126.
127.
A simple bacterial model for studying effects of human mutations in vivo, when homologous genes exist in bacterial and human cells, is presented. We have constructed Escherichia coli strains bearing different alleles of the metF gene, an ortologue of human MTHFR gene, coding for 5,10-methylenetetrahydrofolate reductase. These strains bear a null mutation in the chromosomal metF gene and different metF alleles on plasmid(s), and thus there are merozygotes mimicking wild-type homozygotes, heterozygotes and recessive mutant homozygotes. The A177V mutantion in metF corresponds to one of the most common MTHFR polymorphism, A222V, which has been shown to be associated with increased levels of homocysteine in plasma that, in turn, causes many serious medical problems. Results of relatively simple and quick experiments with these strains are compatible with previously published reports on effects of the A222V substitution in the product of MTHFR gene. In addition, these results suggest either impairment of formation of heterodimers and/or heterotetramers by wild-type and A177V metF variants or dominance of the wild-type polypepides in such structures. Moreover, positive effects of folic acid and vitamins B2 and B12 on physiology of the mutant cells, suggested on the basis of clinical studies, is confirmed. Therefore, we conclude that the bacterial model described in this report may be a useful tool in studies on human mutations.  相似文献   
128.
The III-A intermediate constitutes the major rate-determining step in the oxidative folding of leech carboxypeptidase inhibitor (LCI). In this work, III-A has been directly purified from the folding reaction and structurally characterized by NMR spectroscopy. This species, containing three native disulfides, displays a highly native-like structure; however, it lacks some secondary structure elements, making it more flexible than native LCI. III-A represents a structurally determined example of a disulfide-insecure intermediate; direct oxidation of this species to the fully native protein seems to be restricted by the burial of its two free cysteine residues inside a native-like structure. We also show that theoretical approaches based on topological constraints predict with good accuracy the presence of this folding intermediate. Overall, the derived results suggest that, as it occurs with non-disulfide bonded proteins, native-like interactions between segments of secondary structure rather than the crosslinking of disulfide bonds direct the folding of LCI.  相似文献   
129.
TRPM4, a Ca(2+)-activated cation channel of the transient receptor potential superfamily, undergoes a fast desensitization to Ca(2+). The mechanisms underlying the alterations in Ca(2+) sensitivity are unknown. Here we show that cytoplasmic ATP reversed Ca(2+) sensitivity after desensitization, whereas mutations to putative ATP binding sites resulted in faster and more complete desensitization. Phorbol ester-induced activation of protein kinase C (PKC) increased the Ca(2+) sensitivity of wild-type TRPM4 but not of two mutants mutated at putative PKC phosphorylation sites. Overexpression of a calmodulin mutant unable to bind Ca(2+) dramatically reduced TRPM4 activation. We identified five Ca(2+)-calmodulin binding sites in TRPM4 and showed that deletion of any of the three C-terminal sites strongly impaired current activation by reducing Ca(2+) sensitivity and shifting the voltage dependence of activation to very positive potentials. Thus, the Ca(2+) sensitivity of TRPM4 is regulated by ATP, PKC-dependent phosphorylation, and calmodulin binding at the C terminus.  相似文献   
130.
Substrate recognition by Clp chaperones is dependent on interactions with motifs composed of specific peptide sequences. We studied the binding of short motif-bearing peptides to ClpA, the chaperone component of the ATP-dependent ClpAP protease of Escherichia coli in the presence of ATPgammaS and Mg2+ at pH 7.5. Binding was measured by isothermal titration calorimetry (ITC) using the peptide, AANDENYALAA, which corresponds to the SsrA degradation motif found at the C terminus of abnormal nascent polypeptides in vivo. One SsrA peptide was bound per hexamer of ClpA with an association constant (K(A)) of 5 x 10(6) m(-1). Binding was also assayed by changes in fluorescence of an N-terminal dansylated SsrA peptide, which bound with the same stoichiometry of one per ClpA hexamer (K(A) approximately 1 x 10(7) m(-1)). Similar results were obtained when ATP was substituted for ATPgammaS at 6 degrees C. Two additional peptides, derived from the phage P1 RepA protein and the E. coli HemA protein, which bear different substrate motifs, were competitive inhibitors of SsrA binding and bound to ClpA hexamers with K(A)' > 3 x 10(7) m(-1). DNS-SsrA bound with only slightly reduced affinity to deletion mutants of ClpA missing either the N-terminal domain or the C-terminal nucleotide-binding domain, indicating that the binding site for SsrA lies within the N-terminal nucleotide-binding domain. Because only one protein at a time can be unfolded and translocated by ClpA hexamers, restricting the number of peptides initially bound should avoid nonproductive binding of substrates and aggregation of partially processed proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号