首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   2篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   7篇
  2011年   9篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2001年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1984年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有69条查询结果,搜索用时 250 毫秒
41.
Selenoproteins serve important functions in many organisms, usually providing essential oxidoreductase enzymatic activity, often for defense against toxic xenobiotic substances. Most eukaryotic genomes possess a small number of these proteins, usually not more than 20. Selenoproteins belong to various structural classes, often related to oxidoreductase function, yet a few of them are completely uncharacterised.Here, the structural and functional prediction for the uncharacterised selenoprotein O (SELO) is presented. Using bioinformatics tools, we predict that SELO protein adopts a three-dimensional fold similar to protein kinases. Furthermore, we argue that despite the lack of conservation of the "classic" catalytic aspartate residue of the archetypical His-Arg-Asp motif, SELO kinases might have retained catalytic phosphotransferase activity, albeit with an atypical active site. Lastly, the role of the selenocysteine residue is considered and the possibility of an oxidoreductase-regulated kinase function for SELO is discussed.The novel kinase prediction is discussed in the context of functional data on SELO orthologues in model organisms, FMP40 a.k.a.YPL222W (yeast), and ydiU (bacteria). Expression data from bacteria and yeast suggest a role in oxidative stress response. Analysis of genomic neighbourhoods of SELO homologues in the three domains of life points toward a role in regulation of ABC transport, in oxidative stress response, or in basic metabolism regulation. Among bacteria possessing SELO homologues, there is a significant over-representation of aquatic organisms, also of aerobic ones. The selenocysteine residue in SELO proteins occurs only in few members of this protein family, including proteins from Metazoa, and few small eukaryotes (Ostreococcus, stramenopiles). It is also demonstrated that enterobacterial mchC proteins involved in maturation of bactericidal antibiotics, microcins, form a distant subfamily of the SELO proteins.The new protein structural domain, with a putative kinase function assigned, expands the known kinome and deserves experimental determination of its biological role within the cell-signaling network.  相似文献   
42.

Background  

The correct folding and dimerization of tubulins, before their addition to the microtubular structure, needs a group of conserved proteins called cofactors A to E. The biochemical analysis of cofactors gave an insight to their general functions, however not much is known about the domain structure and detailed, molecular function of these proteins.  相似文献   
43.
The purpose of this study was to evaluate the oxidative capacities and the rate of energy synthesis in isolated mitochondria extracted from normal and post-ischemic myocardium. Isolated rat hearts were perfused according to the working mode with a Krebs Heinseleit buffer containing glucose (11 mM), insulin (10 IU/1) and caprylic acid (25 M). After a 15 min perfusion in normoxic conditions, the hearts were subjected to a 20 min local zero-flow ischemia followed by a 20 min reperfusion. During the perfusion, the aortic and coronary flows, the aortic pressure and the electrocardiogram were monitored. At the end of the reperfusion period, the non-ischemic and ischemic zones (NIZ and IZ, respectively) were separated and the mitochondria were harvested from each zone. The oxygen uptake and the rate of energy production of the NIZ and IZ mitochondria were then assessed with palmitoylcarnitine as substrate in 2 buffers differing in their free calcium concentration (0.041 and 0.150 M). Ischemia provoked a 50% reduction of coronary and aortic flows. The reperfusion of the IZ allowed the partial recovery of coronary flow, but the aortic flow decreased beneath its ischemic value because of the occurrence of severe arrhythmias, stunning and probably hibernation. The IZ mitochondria displayed a lower rate of oxygen consumption, whatever the buffer free calcium concentration. Conversely, their rate of energy production was increased, indicating that their metabolic efficiency was improved as compared to NIZ mitochondria. This might be due to the mitochondrial calcium overload persisting during reperfusion, to the activation of the inner membrane Na+/Ca2+ exchange and to a significant mitochondrial swelling. On the other hand, the presence of an elevated free calcium concentration in the respiration buffer provoked some energy wasting characterized by a constant AMP production. This was attributed to some accumulation of acetate and the activation of the energy-consuming acetylCoA synthetase. In conclusion, ischemia and reperfusion did not alter the membrane integrity of the mitochondria but improved their metabolic efficiency. Nevertheless, these in vitro results can not reflect the mitochondrial function in the reperfused myocardium. The mitochondrial calcium overload reported to last during reperfusion in the cardiomyocytes might mimic the free calcium-induced reduction of metabolic efficiency observed in vitro in the present study. The resulting energy wasting might be responsible for the contractile abnormalities noticed in the reperfused myocardium.  相似文献   
44.
Ehrlich ascites tumor cells incorporate [methyl-3H]thymidine into DNA independently of exogenous growth factors or fetal calf serum. Using an acid/ethanol extraction procedure we have obtained from these tumor cells a fraction that induces both the proliferation and the formation of cell foci by Swiss 3T3 mouse fibroblasts in the presence of insulin; inhibits the proliferation of Mv1Lu mink lung epithelial cells; and stimulates the growth of NRK rat kidney fibroblasts in soft-agar in the presence of epidermal growth factor. An antibody against transforming growth factor- (TGF) prevents both the tumor extract-induced proliferation of Swiss 3T3 fibroblasts and the tumor extract-induced proliferative arrest of Mv1Lu cells. The tumor cells secrete a TGF-like activity to the extracellular medium in a partially-activated form. However, authentic TGF does not affect their proliferation, and no TGF receptors were detected using [125I]TGF as a ligand. Therefore, the absence of TGF receptors with ligand-binding capacity in these tumor cells may bypass the negative control that this factor exerts on the proliferation of their normal cell counterparts.  相似文献   
45.
This study was carried out in order to determine if the efficiency of amiodarone, a class III antiarrhythmic agent, is associated with changes in mitochondrial oxidative phosphorylation. A population of 30 rats were treated with amiodarone (100 mg/kg/day) for 5 days. A second population receiving only vehicle was used as control. The hearts were perfused according to the working mode. After 15 min of normoxic perfusion, the left main coronary artery was ligated and the ligation was maintained for 20 min. The ligation was removed and reperfusion continued for a further 30 min. The electrocardiogram was monitored continuously. At the end of perfusion, the ischemic and non ischemic areas were visually separated and mitochondria were harvested from each area. Their oxidative and energy metabolism were assessed with palmitoylcarnitine as substrate in 2 respiration media differing in their free calcium concentration (0 or 0.34 m). In normoxic conditions, amiodarone treatment increased the cardiac metabolic efficiency (mechanical work to oxygen consumption ratio). The local ischemia decreased the aortic and coronary flows without modifying the cardiac metabolic efficiency. Amiodarone treatment maintained the aortic flow at a significantly higher value; the duration of severe arrhythmias was significantly decreased by the drug. The reperfusion of the ischemic area allowed the partial recovery of fluid dynamics. The coronary flow was restored to 89% of the pre ischemic value. Conversely, the aortic flow never exceeded that measured at the end of ischemia, partly due to the important development of severe arrhythmias. The recovery of aortic flow and metabolic efficiency during reperfusion was improved by amiodarone treatment; ventricular tachycardia and fibrillation duration were reduced. In the mitochondria issued from the normoxic area, the energy metabolism was not altered by the amiodarone treatment, but the presence of calcium in the respiration medium modified the oxidative phosphorylation. The divalent cation slightly decreased the state III respiration rate and increased noticeably the state IV respiration rate. This was associated with an important mitochondrial AMP production and maintenance of ADP in the respiration medium. This energy wasting was reported to decrease the mitochondrial metabolic efficiency. After an ischemia-reperfusion sequence, mitochondrial oxidation phosphorylation was reduced and amiodarone treatment amplified this decrease. This was presumably due to an increased mitochondrial calcium accumulation. Thus, the beneficial properties of amiodarone during reperfusion are supposed to be due to a protection against the deleterious effect of excess matrix calcium on mitochondrial energy metabolism.  相似文献   
46.
Although lipids are largely involved in cardiovascular physiopathology, the lipid metabolism in endothelial cells remains largely unknown. Human umbilical vein endothelial cells (HUVECs) were used to investigate the metabolism of complex lipids. The membrane phospholipid homeostasis results from both de novo synthesis and remodelling that ensures the fine tuning of the phospholipid fatty acid composition. Using [(3)H]-glycerol and phosphoderivatives we showed the efficiency of glycerolipid synthesis from glycerol (0.9 nmol h(-1) mg proteins(-1)), but not from its phosphorylated form suggesting the requirement of a functional glycerol kinase in HUVECs. Conversely, the synthesis of triacylglycerols was very low (less than 5% of phospholipid synthesis). The incorporation rate of fatty acids into phospholipids showed that there is a specific fate for each fatty acid in respect to its chain length and saturation level. Moreover in steady state condition, increasing the long chain omega3 polyunsaturated fatty acids in the medium resulted in an increased polyunsaturated/saturated ratio in phospholipids (from 0.42 to 0.63). [(14)C]O(2) was produced form either [(14)C]-glucose or [(14)C]-palmitate indicating the functionality of the oxidation pathways, although beta-oxidation was less efficient than glucose oxidation. The endothelial cell lipid metabolism involves conventional pathways, with functional rates largely slower than in hepatocytes or in cardiomyocytes.  相似文献   
47.
Fifty-six male Wistar SPF rats were fed a diet containing low erucic acid rapeseed (LEAR) oil (15% by weight) as the only source of lipids for 18 wk. Lipid parameters (fatty acid composition and contents of lipid classes) and the occurrence and severity of focal lesions were both determined on the heart of each animal. Four groups were constituted according to the severity of cardiac lesions. Statistical analyses were applied to the data to find a relationship between the lipid parameters and the severity of heart lesions. None of the measured parameters (heart contents of neutral lipids, total phospholipids, phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol, sphingomyelin and fatty acid composition of each phospholipid class) appeared to be related with the grading of the lesions. Therefore, we failed to find a direct support for the assumption that heart lesions, induced by LEAR oil, are mediated by changes in the lipid and/or fatty acid composition of heart membranes. However, this hypothesis can not be discarded.  相似文献   
48.
Yeast Atg2, an autophagy-related protein, is highly conserved in other fungi and has two homologues in humans, one of which is hAtg2A encoded by the hATG2A/KIAA0404 gene. Region of homology between Atg2 and hAtg2A proteins comprises the C-terminal domain. We used yeast atg2D strain to express the GFP-KIAA0404 gene, its fragment or fusions with yeast ATG2, and study their effects on autophagy. The GFP-hAtg2A protein localized to punctate structures, some of which colocalized with Ape1-RFP-marked preautophagosomal structure (PAS), but it did not restore autophagy in atg2Δ cells. N-terminal fragment of Atg2 and N-terminal fragment of hAtg2A were sufficient for PAS recruitment but were not sufficient to function in autophagy. Neither a fusion of the N-terminal fragment of hAtg2A with C-terminal domain of Atg2 nor a reciprocal fusion were functional in autophagy. hAtg2A, in contrast to yeast Atg2, did not show interaction with the yeast autophagy protein Atg9 but both Atg2 proteins showed interaction with Atg18, a phospholipid-binding protein, in two-hybrid system. Moreover, deletion of ATG18 abrogated PAS recruitment of hAtg2A. Our results show that human hAtg2A can not function in autophagy in yeast, however, it is recruited to the PAS, possibly due to the interaction with Atg18.  相似文献   
49.
50.
Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号