首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   7篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
  1975年   2篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
11.
K J Gruys  C J Halkides  P A Frey 《Biochemistry》1987,26(24):7575-7585
The synthesis of 2-acetylthiamin pyrophosphate (acetyl-TPP) is described. The synthesis of this compound is accomplished at 23 degrees C by the oxidation of 2-(1-hydroxyethyl)thiamin pyrophosphate using aqueous chromic acid as the oxidizing agent under conditions where Cr(III) coordination to the pyrophosphoryl moiety and hydrolysis of both the pyrophosphate and acetyl moieties were prevented. Although the chemical properties exhibited by acetyl-TPP are similar to those of the 2-acetyl-3,4-dimethylthiazolium ion examined by Lienhard [Lienhard, G.E. (1966) J. Am. Chem. Soc. 88, 5642-5649], significant differences exist because of the pyrimidine ring in acetyl-TPP. Characterization of acetyl-TPP by ultraviolet spectroscopy, 1H NMR, 13C NMR, and 31P NMR provided evidence that the compound in aqueous solution exists as an equilibrium mixture of keto, hydrate, and intramolecular carbinolamine forms. The equilibria for the hydration and carbinolamine formation reactions at pD 1.3 as determined by 1H NMR are strongly dependent on the temperature, showing an increase in the hydrate and carbinolamine forms at the expense of the keto form with decreasing temperature. The concentration of keto form also decreases with increasing pH. Acetyl-TPP is stable in aqueous acid but rapidly deacetylates at higher pH to form acetate and thiamin pyrophosphate. Trapping of the acetyl moiety in aqueous solution occurs efficiently with 1.0 M hydroxylamine at pH 5.5-6.5 to form acetohydroxamic acid and to a much smaller extent with 1.0 M 2-mercaptoethanol at pH 4.0 and 5.0 to form thio ester. Transfer of the acetyl group to 0.5 M dihydrolipoic acid at pH 5.0 and 1.0 M phosphate dianion at pH 7.0 is not observed to any significant extent in water. The kinetic and thermodynamic reactivity of acetyl-TPP with water and other nucleophiles is compatible with a hypothetical role for acyl-TPPs as enzymatic acyl-transfer intermediates.  相似文献   
12.
Polyhydroxyalkanoates (PHAs) comprise a class of biodegradable polymers which offer an environmentally sustainable alternative to petroleum-based plastics. Production of PHAs in plants is attractive since current fermentation technology is prohibitively expensive. The PHA homopolymer poly(β-hydroxybutyrate) (PHB) has previously been produced in leaves of Arabidopsis thaliana (Nawrath et al., 1994, Proc Natl Acad Sci USA 91: 12760–12764). However, Brassica napus oilseed may provide a better system for PHB production because acetyl-CoA, the substrate required in the first step of PHB biosynthesis, is prevalent during fatty acid biosynthesis. Three enzymatic activities are needed to synthesize PHB: a β-ketothiolase, an acetoacetyl-CoA reductase and a PHB synthase. Genes from the bacterium Ralstonia eutropha encoding these enzymes were independently engineered behind the seed-specific Lesquerella fendleri oleate 12-hydroxylase promoter in a modular fashion. The gene cassettes were sequentially transferred into a single, multi-gene vector which was used to transform B. napus. Poly(β-hydroxybutyrate) accumulated in leukoplasts to levels as high as 7.7% fresh seed weight of mature seeds. Electron-microscopy analyses indicated that leukoplasts from these plants were distorted, yet intact, and appeared to expand in response to polymer accumulation. Received: 26 May 1999 / Accepted: 16 June 1999  相似文献   
13.
The purpose of this research was to identify pig welfare indicators that could help in recognizing stressful practices on farm. The study evaluated behavioral and physiological indicators (cortisol and negative acute phase proteins) in 2 groups of 20 female pigs 4 months old after a 48-hr transport. The first group (A) was transported at the end of May, the second (B) in June. Behavioral observations and blood collection occurred at arrival (D1) and 28 days later (D28). Compared with within-animal control samples obtained 28 days later, pigs of Group A had increased cortisol levels and decreased albumin concentrations after arrival. As demonstrated by lesion and behavior observations, the effect on cortisol and albumin was higher in Group B pigs after a tail-biting episode occurred. The study has reported no evidence of Retinol Binding Protein (RBP) in pigs. A method developed for swine RBP quantification found RBP strongly reduced in D28 samples of Group B, confirming it to be a negative protein in pigs. The suggested combination of physiological and behavioral indicators could provide useful information on the welfare state of an animal.  相似文献   
14.
Pannexins (Panxs) are a multifaceted family of ion and metabolite channels that play key roles in a number of physiological and pathophysiological settings. These single membrane large-pore channels exhibit a variety of tissue, cell type, and subcellular distributions. The lifecycles of Panxs are complex, yet must be understood to accurately target these proteins for future therapeutic use. Here we review the basics of Panx function and localization, and then analyze the recent advances in knowledge regarding Panx trafficking. We examine several intrinsic features of Panxs including specific post-translational modifications, the divergent C-termini, and oligomerization, all of which contribute to Panx anterograde transport pathways. Further, we examine the potential influence of extrinsic factors, such as protein-protein interactions, on Panx trafficking. Finally, we highlight what is currently known with respect to Panx internalization and retrograde transport, and present new data illustrating Panx1 internalization following an activating stimulus.  相似文献   
15.
Abstract: This article reports an assessment of the global warming potential associated with the life cycle of a biopolymer (poly(hydroxyalkanoate) or PHA) produced in genetically engineered corn developed by Monsanto. The grain corn is harvested in a conventional manner, and the polymer is extracted from the corn stover (i.e., residues such as stalks, leaves and cobs), which would be otherwise left on the field. While corn farming was assessed based on current practice, four different hypothetical PHA production scenarios were tested for the extraction process. Each scenario differed in the energy source used for polymer extraction and compounding, and the results were compared to polyethylene (PE). The first scenario involved burning of the residual biomass (primarily cellulose) remaining after the polymer was extracted from the stover. In the three other scenarios, the use of conventional energy sources of coal, oil, and natural gas were investigated. This study indicates that an integrated system, wherein biomass energy from corn stover provides energy for polymer processing, would result in a better greenhouse gas profile for PHA than for PE. However, plant-based PHA production using fossil fuel sources provides no greenhouse gas advantage over PE, in fact scoring worse than PE. These results are based on a "cradle-to-pellet" modeling as the PHA end-of-life was not quantitatively studied due to complex issues surrounding the actual fate of postconsumer PHA.  相似文献   
16.
Previous studies of Escherichia coli 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS, EC 2.5.1.19) have suggested that the kinetic reaction mechanism for this enzyme in the forward direction is equilibrium ordered with shikimate 3-phosphate (S3P) binding first followed by phosphoenolpyruvate (PEP). Recent results from this laboratory, however, measuring direct binding of PEP and PEP analogues to free EPSPS suggest more random character to the enzyme. Steady-state kinetic and spectroscopic studies presented here indicate that E. coli EPSPS does indeed follow a random kinetic mechanism. Initial velocity studies with S3P and PEP show competitive substrate inhibition by PEP added to a normal intersecting pattern. Substrate inhibition is proposed to occur by competitive binding of PEP at the S3P site [Ki(PEP) = 6-8 mM]. To test for a productive EPSPS.PEP binary complex, the reaction order of EPSPS was evaluated with shikimic acid and PEP as substrates. The mechanism for this reaction is equilibrium ordered with PEP binding first giving a Kia value for PEP in agreement with the independently measured Kd of 0.39 mM (shikimate Km = 25 mM). Results from this study also show that the 3-phosphate moiety of S3P offers 8.7 kcal/mol in binding energy versus a hydroxyl in this position. Over 60% of this binding energy is expressed in binding of substrate to enzyme rather than toward increasing kcat. Glyphosate inhibition of shikimate turnover was poor with approximately 8 x 10(4) loss in binding capacity compared to the normal reaction, consistent with the independently measured Kd of 12 mM for the EPSPS.glyphosate binary complex. The EPSPS.glyphosate complex induces shikimate binding, however, by a factor of 7 greater than EPSPS.PEP. Carboxyallenyl phosphate and (Z)-3-fluoro-PEP were found to be strong inhibitors of the enzyme that have surprising affinity for the S3P binding domain in addition to the PEP site as measured both kinetically and by direct observation with 31P NMR. The collective data indicate that the true kinetic mechanism for EPSPS in the forward direction is random with synergistic binding occurring between substrates and inhibitors. The synergism explains how the mechanism can be random with S3P and PEP, but yet equilibrium ordered with PEP binding first for shikimate turnover. Synergism also accounts for how glyphosate can be a strong inhibitor of the normal reaction, but poor versus shikimate turnover.  相似文献   
17.

Background  

Adverse drug reactions (ADRs) are now recognized as an important cause of hospital admissions, with a proportion ranging from 0.9–7.9%. They also constitute a significant economic burden. We thus aimed at determining the prevalence and the economic burden of ADRs presenting to Medical Emergency Department (ED) of a tertiary referral center in India  相似文献   
18.
19.
The production of polyhydroxyalkanoates in plants is an interesting commercial prospect due to lower carbon feedstock costs and capital investments. The production of poly-(3-hydroxybutyrate) has already been successfully demonstrated in plant plastids, and the production of more complex polymers is under investigation. Using a mathematical simulation model this paper outlines the theoretical prospects of producing the copolymer poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-3HV)] in plant plastids. The model suggests that both the 3HV/3HB ratio and the copolymer production rate will vary considerably between dark and light conditions. Using metabolic control analysis we predict that the beta-ketothiolase predominately controls the copolymer production rate, but that the activity of all three enzymes influence the copolymer ratio. Dynamic simulations further suggest that controlled expression of the three enzymes at different levels may enable desirable changes in both the copolymer production rate and the 3HV/3HB ratio. Finally, we illustrate that natural variations in substrate and cofactor levels may have a considerable impact on both the production rate and the copolymer ratio, which must be taken into account when constructing a production system.  相似文献   
20.
Plant resistance to glyphosate has been reported far less frequently than resistance to sulfonylurea and imidazolinone herbicides. However, these studies tend to be anecdotal, without side by side comparisons for a single species or natural isolate. In this study, we tested the frequencies of resistance of three herbicides in a controlled ethylmethanesulfonate (EMS) saturation mutagenesis experiment, allowing a direct comparison of the frequencies at which resistant mutant plants arise. The 100% growth inhibition dose rates of glyphosate, chlorsulfuron (a sulfonylurea herbicide), and imazethapyr (an imidazolinone herbicide) were determined for Arabidopsis. Populations of EMS-mutagenized M(2) seedlings were sprayed with twice the 100% growth inhibition dose of glyphosate, chlorsulfuron, or imazethapyr, and herbicide-resistant mutants were identified. Although there were no glyphosate-resistant mutants among M(2) progeny of 125,000 Columbia and 125,000 Landsberg erecta M(1) lines, chlorsulfuron resistance and imazethapyr resistance each appeared at frequencies of 3.2 x 10(-5). Given the observed frequency of herbicide resistance mutations, we calculate that there are at least 700 mutations in each EMS-mutagenized Arabidopsis line and that fewer than 50,000 M(1) lines are needed to have a 95% chance of finding a mutation in any given G:C base pair in the genome. As part of this study, two previously unreported Arabidopsis mutations conferring resistance to imidazolinone herbicides, csr1-5 (Ala-122-Thr) and csr1-6 (Ala-205-Val), were discovered. Neither of these mutations caused enhanced resistance to chlorsulfuron in Arabidopsis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号