首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   536篇
  免费   41篇
  2021年   5篇
  2019年   5篇
  2018年   4篇
  2017年   7篇
  2016年   7篇
  2015年   15篇
  2014年   27篇
  2013年   24篇
  2012年   23篇
  2011年   19篇
  2010年   17篇
  2009年   16篇
  2008年   28篇
  2007年   22篇
  2006年   18篇
  2005年   15篇
  2004年   21篇
  2003年   13篇
  2002年   10篇
  2001年   12篇
  2000年   9篇
  1999年   15篇
  1998年   13篇
  1997年   6篇
  1996年   12篇
  1995年   7篇
  1993年   11篇
  1992年   13篇
  1991年   11篇
  1990年   12篇
  1989年   12篇
  1988年   6篇
  1987年   7篇
  1986年   6篇
  1985年   11篇
  1984年   4篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1975年   8篇
  1974年   6篇
  1973年   3篇
  1972年   3篇
  1971年   4篇
  1970年   5篇
  1969年   4篇
  1968年   4篇
  1910年   3篇
  1901年   4篇
排序方式: 共有577条查询结果,搜索用时 437 毫秒
171.
172.
173.
Calretinin (CR) is a neuronal EF-hand protein previously characterized as a calcium (micromolar affinity) binding protein. CR-containing neurons are spared in some neurodegenerative diseases, although it is as yet unconfirmed how CR plays an active role in this protection. Higher levels of some metal cations (e.g. copper and zinc) are associated with these diseases. At the same time, metals such as terbium (NMR and fluorescence) cadmium (NMR) and manganese (EPR) serve as useful calcium analogues in the study of EF-hand proteins. We survey the binding of the above-mentioned metal cations that might affect the structure and function of CR. Competitive 45Ca2+-overlay, competitive terbium fluorescence and intrinsic tryptophan fluorescence are used to detect the binding of metal cations to CR. Terbium and copper (half-maximal effect of 15 microM) bind to CR. Terbium has a similar or greater affinity for the calcium-binding sites of CR than calcium. Copper quenches the fluorescence of terbium-bound CR, and CR tryptophan residues and competes weakly for 45Ca2+-binding sites. Cadmium, magnesium, manganese and zinc bind less strongly (half-maximal effects above 0.1 mM). Therefore, only terbium appears to be a suitable analytical calcium analogue in further studies of CR. The principal conclusion of this work is that copper, in addition to calcium, might be a factor in the function of CR and a link between CR and neurodegenerative diseases.  相似文献   
174.
175.
Estimating the invasion success of introduced plants   总被引:1,自引:1,他引:0  
We present methods for estimating the base proportion of introduced alien species that will naturalize, and the distribution of time until naturalization occurs. The approach is Bayesian, incorporating prior estimates of the probability of naturalization and the time from introduction to naturalization. A worked example uses data on the introduction and time to recorded naturalization of woody perennials introduced to South Australia. Up until 2007, 188 of 2230 (8.4%) woody perennials listed in nursery catalogues between 1843 and 1985 were recorded as having naturalized. If prior information on naturalization rates from elsewhere is ignored, the available data suggest that the most likely proportion of introduced plants that will naturalize is large (0.93) though uncertain (95% CI 0.51–0.99), with the corresponding mean time to recorded naturalization being protracted (522 years) and similarly uncertain (95% CI 360–678 years). Alternatively, if informative prior estimates of both the naturalization probability and the time to recorded naturalization are incorporated, the most likely probability of naturalization is estimated to be 18.6% (95% CI 15.5–23.4%). For those plants that do naturalize, the most likely value for the mean time from importation to recorded naturalization is 149 years (95% CI 130–174 years). Our results illustrate the potentially long timescale of the naturalization process, and the challenges this presents for obtaining accurate estimates of naturalization parameters.  相似文献   
176.
Tropical peatlands play an important role in the global carbon cycling but little is known about factors regulating carbon dioxide (CO2) and methane (CH4) fluxes from these ecosystems. Here, we test the hypotheses that (i) CO2 and CH4 are produced mainly from surface peat and (ii) that the contribution of subsurface peat to net C emissions is governed by substrate availability. To achieve this, in situ and ex situ CO2 and CH4 fluxes were determined throughout the peat profiles under three vegetation types along a nutrient gradient in a tropical ombrotrophic peatland in Panama. The peat was also characterized with respect to its organic composition using 13C solid state cross‐polarization magic‐angle spinning nuclear magnetic resonance spectroscopy. Deep peat contributed substantially to CO2 effluxes both with respect to actual in situ and potential ex situ fluxes. CH4 was produced throughout the peat profile with distinct subsurface peaks, but net emission was limited by oxidation in the surface layers. CO2 and CH4 production were strongly substrate‐limited and a large proportion of the variance in their production (30% and 63%, respectively) was related to the quantity of carbohydrates in the peat. Furthermore, CO2 and CH4 production differed between vegetation types, suggesting that the quality of plant‐derived carbon inputs is an important driver of trace gas production throughout the peat profile. We conclude that the production of both CO2 and CH4 from subsurface peat is a substantial component of the net efflux of these gases, but that gas production through the peat profile is regulated in part by the degree of decomposition of the peat.  相似文献   
177.
Physical inputs, both internal and external to a cell, can directly alter the spatial organization of cell surface receptors and their associated functions. Here we describe a protocol that combines solid-state nanolithography and supported lipid membrane techniques to trigger and manipulate specific receptors on the surface of living cells and to develop an understanding of the interplay between spatial organization and receptor function. While existing protein-patterning techniques are capable of presenting cells with well-defined clusters of protein, this protocol uniquely allows for the control of the spatial organization of laterally fluid receptor-ligand complex at an intermembrane junction. A combination of immunofluorescence and single-cell microscopy methods and complementary biochemical analyses are used to characterize receptor signaling pathways and cell functions. The protocol requires 2-5 d to complete depending on the parameters to be studied. In principle, this protocol is widely applicable to eukaryotic cells and herein is specifically developed to study the role of physical organization and translocation of the EphA2 receptor tyrosine kinase across a library of model breast cancer cell lines.  相似文献   
178.
The steroid binding mechanism of a DNA aptamer was studied using isothermal titration calorimetry (ITC), NMR spectroscopy, quasi-elastic light scattering (QELS), and small-angle X-ray spectroscopy (SAXS). Binding affinity determination of a series of steroid-binding aptamers derived from a parent cocaine-binding aptamer demonstrates that substituting a GA base pair with a GC base pair governs the switch in binding specificity from cocaine to the steroid deoxycholic acid (DCA). Binding of DCA to all aptamers is an enthalpically driven process with an unfavorable binding entropy. We engineered into the steroid-binding aptamer a ligand-induced folding mechanism by shortening the terminal stem by two base pairs. NMR methods were used to demonstrate that there is a transition from a state where base pairs are formed in one stem of the free aptamer, to where three stems are formed in the DCA-bound aptamer. The ability to generate a ligand-induced folding mechanism into a DNA aptamer architecture based on the three-way junction of the cocaine-binding aptamer opens the door to obtaining a series of aptamers all with ligand-induced folding mechanisms but triggered by different ligands. Hydrodynamic data from diffusion NMR spectroscopy, QELS, and SAXS show that for the aptamer with the full-length terminal stem there is a small amount of structure compaction with DCA binding. For ligand binding by the short terminal stem aptamer, we propose a binding mechanism where secondary structure forms upon DCA binding starting from a free structure where the aptamer exists in a compact form.  相似文献   
179.
The diagnostic substrate tetramethylcyclopropane (TMCP) has been reexamined as a substrate with three drug- and xenobiotic-metabolizing cytochrome P450 enzymes, human CYP2E1, CYP3A4 and rat CYP2B1. The major hydroxylation product in all cases was the unrearranged primary alcohol along with smaller amounts of a rearranged tertiary alcohol. Significantly, another ring-opened product, diacetone alcohol, was also observed. With CYP2E1 this product accounted for 20% of the total turnover. Diacetone alcohol also was detected as a product from TMCP with a biomimetic model catalyst, FeTMPyP, but not with a ruthenium porphyrin catalyst. Lifetimes of the intermediate radicals were determined from the ratios of rearranged and unrearranged products to be 120, 13 and 1 ps for CYP2E1, CYP3A4 and CYP2B1, respectively, corresponding to rebound rates of 0.9 × 1010 s−1, 7.2 × 1010 s−1 and 1.0 × 1012 s−1. For the model iron porphyrin, FeTMPyP, a radical lifetime of 81 ps and a rebound rate of 1.2 × 1010 s−1 were determined. These apparent radical lifetimes are consistent with earlier reports with a variety of CYP enzymes and radical clock substrates, however, the large amounts of diacetone alcohol with CYP2E1 and the iron porphyrin suggest that for these systems a considerable amount of the intermediate carbon radical is trapped by molecular oxygen. These results add to the view that cage escape of the intermediate carbon radical in [FeIV–OH R] can compete with cage collapse to form a C–O bond. The results could be significant with regard to our understanding of iron-catalyzed C–H hydroxylation, the observation of P450-dependent peroxidation and the development of oxidative stress, especially for CYP2E1.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号