首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1423篇
  免费   88篇
  2022年   12篇
  2021年   33篇
  2020年   12篇
  2019年   17篇
  2018年   19篇
  2017年   27篇
  2016年   41篇
  2015年   55篇
  2014年   74篇
  2013年   71篇
  2012年   97篇
  2011年   88篇
  2010年   55篇
  2009年   34篇
  2008年   50篇
  2007年   67篇
  2006年   63篇
  2005年   61篇
  2004年   46篇
  2003年   53篇
  2002年   46篇
  2001年   25篇
  2000年   17篇
  1999年   21篇
  1998年   12篇
  1996年   13篇
  1995年   16篇
  1994年   13篇
  1993年   9篇
  1992年   17篇
  1991年   16篇
  1990年   13篇
  1989年   12篇
  1988年   14篇
  1987年   15篇
  1986年   15篇
  1985年   25篇
  1984年   10篇
  1983年   20篇
  1982年   12篇
  1981年   12篇
  1980年   20篇
  1979年   20篇
  1978年   12篇
  1977年   9篇
  1976年   19篇
  1975年   11篇
  1974年   12篇
  1973年   11篇
  1972年   10篇
排序方式: 共有1511条查询结果,搜索用时 15 毫秒
71.
The rise of antibacterial-resistant bacteria is a major problem in the United States of America and around the world. Millions of patients are infected with antimicrobial resistant bacteria each year. Novel antibacterial agents are needed to combat the growing and present crisis. Acetyl-CoA carboxylase (ACC), the multi-subunit complex which catalyses the first committed step in fatty acid synthesis, is a validated target for antibacterial agents. However, there are at present, no commercially available antibiotics that target ACC. Ethyl 4-[[2-chloro-5-(phenylcarbamoyl)phenyl]sulfonylamino]benzoate (SABA1) is a compound that has been shown to have antibacterial properties against Pseudomonas aeruginosa and Escherichia coli. SABA1 inhibits biotin carboxylase (BC), the enzyme that catalyses the first half reaction of ACC. SABA1 inhibits BC via an atypical mechanism. It binds in the biotin binding site in the presence of ADP. SABA1 represents a potentially new class of antibiotics that can be used to combat the antibacterial resistance crisis.  相似文献   
72.
Arrestins and their yeast homologs, arrestin-related trafficking adaptors (ARTs), share a stretch of 29 amino acids called the ART motif. However, the functionality of that motif is unknown. We now report that deleting this motif prevents agonist-induced ubiquitination of β-arrestin2 (β-arr2) and blocks its association with activated G protein–coupled receptors (GPCRs). Within the ART motif, we have identified a conserved phenylalanine residue, Phe116, that is critical for the formation of β-arr2–GPCR complexes. β-arr2 Phe116Ala mutant has negligible effect on blunting β2-adrenergic receptor–induced cAMP generation unlike β-arr2, which promotes rapid desensitization. Furthermore, available structures for inactive and inositol hexakisphosphate 6–activated forms of bovine β-arr2 revealed that Phe116 is ensconced in a hydrophobic pocket, whereas the adjacent Phe117 and Phe118 residues are not. Mutagenesis of Phe117 and Phe118, but not Phe116, preserves GPCR interaction of β-arr2. Surprisingly, Phe116 is dispensable for the association of β-arr2 with its non-GPCR partners. β-arr2 Phe116Ala mutant presents a significantly reduced protein half-life compared with β-arr2 and undergoes constitutive Lys-48-linked polyubiquitination, which tags proteins for proteasomal degradation. We also found that Phe116 is critical for agonist-dependent β-arr2 ubiquitination with Lys-63-polyubiquitin linkages that are known mediators of protein scaffolding and signal transduction. Finally, we have shown that β-arr2 Phe116Ala interaction with activated β2-adrenergic receptor can be rescued with an in-frame fusion of ubiquitin. Taken together, we conclude that Phe116 preserves structural stability of β-arr2, regulates the formation of β-arr2–GPCR complexes that inhibit G protein signaling, and promotes subsequent ubiquitin-dependent β-arr2 localization and trafficking.  相似文献   
73.
A fimbrial adhesin was identified from an enteroaggregative Escherichia coli strain. The adhesin was purified to 740-fold by sequential chromatography on an affinity matrix and gel filtration column in the FPLC system. The homogeneity of the purified protein was established by analytical isoelectrofocussing (pI 7.25). The native adhesin appeared as a high-molecular-weight aggregative protein as revealed by gel filtration chromatography on Superose 12HR10/30 column. However, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis the molecular weight of the adhesin was found to be 18 kDa and this was further confirmed by gel filtration chromatography on Superose 6HR 10/30 column presence of 6 M guanidine hydrochloride. The N-terminal 15-amino-acid sequence of the adhesin did not show homology with any of the previously reported fimbrial adhesins. The purified adhesin showed adhesion to human erythrocytes in the presence of Ca(2+) (5 mM). The optimum temperature and pH for the hemadhesion activity was found to be 25 degrees C and 6.5, respectively. The inhibition study clearly suggested that the binding site of the adhesin could recognize galactose as the specific sugar. The fluorescence of 4-methylumbelliferyl-alpha-D-galactopyranoside was quenched on binding to the adhesin and maximum reversal of fluorescence quenching was observed by competitive substitution titration with raffinose. The adhesin was found to contain one binding site per monomer for its specific sugar residue. The association constant and the free energy of binding were obtained as 3.98 x 10(5) M(-1) and -31.97 kJ/mol, respectively. The adherence of the bacteria to HEp-2 monolayer was inhibited in presence of galactose and this was further supported by a significant reduction in the bacterial adherence to the HEp-2 cells, pretreated with beta-D-galactosidase.  相似文献   
74.
Inhibition of dendritic cell (DC) maturity is an important immunomodulatory effect of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) and related analogs (D(3) analogs). The mechanisms underlying 1alpha,25(OH)(2)D(3)-mediated DC modulation are Vitamin D receptor (VDR)-dependent and likely involve direct or indirect regulation of multiple genes. Gene expression profiles of bone marrow-derived DCs (BMDCs) generated in the absence or presence of a potent D(3) analog were analyzed using microarray technology. Results for D(3) analog-conditioned DCs were also compared with glucocorticoid-conditioned BMDCs and with BMDCs conditioned with D(3) analog and glucocorticoid combined. Of approximately 12,000 gene products assayed, 52% were considered to have detectable expression in unconditioned BMDCs. Based on relative expression levels, 5.3% of these expressed genes were "silenced" or "suppressed" in D(3) analog-conditioned BMDCs and 2.1% were "augmented". In addition, 1.7% of gene products undetectable in control BMDCs were "induced" by D(3) analog. Functional grouping of modulated genes demonstrated important effects of D(3) analog on immunoreceptors, on chemokines and chemokine receptors, on growth factors/cytokines and related receptors, and on neuroendocrine hormones and related receptors. Many of these gene products were unaffected or differently regulated by glucocorticoid suggesting specific VDR-mediated regulatory effects. Confirmation of microarray analysis results for two differentially regulated chemokines (MIP-1alpha and RANTES) was obtained by RT-PCR and ELISA. The methodology provides novel insights into DC gene regulation by 1alpha,25(OH)(2)D(3) agonists.  相似文献   
75.
Mitochondrial F(1)F(0)-ATPase normally synthesizes ATP in the heart, but under ischemic conditions this enzyme paradoxically causes ATP hydrolysis. Nonselective inhibitors of this enzyme (aurovertin, oligomycin) inhibit ATP synthesis in normal tissue but also inhibit ATP hydrolysis in ischemic myocardium. We characterized the profile of aurovertin and oligomycin in ischemic and nonischemic rat myocardium and compared this with the profile of BMS-199264, which only inhibits F(1)F(0)-ATP hydrolase activity. In isolated rat hearts, aurovertin (1-10 microM) and oligomycin (10 microM), at concentrations inhibiting ATPase activity, reduced ATP concentration and contractile function in the nonischemic heart but significantly reduced the rate of ATP depletion during ischemia. They also inhibited recovery of reperfusion ATP and contractile function, consistent with nonselective F(1)F(0)-ATPase inhibitory activity, which suggests that upon reperfusion, the hydrolase activity switches back to ATP synthesis. BMS-199264 inhibits F(1)F(0) hydrolase activity in submitochondrial particles with no effect on ATP synthase activity. BMS-199264 (1-10 microM) conserved ATP in rat hearts during ischemia while having no effect on preischemic contractile function or ATP concentration. Reperfusion ATP levels were replenished faster and necrosis was reduced by BMS-199264. ATP hydrolase activity ex vivo was selectively inhibited by BMS-199264. Therefore, excessive ATP hydrolysis by F(1)F(0)-ATPase contributes to the decline in cardiac energy reserve during ischemia and selective inhibition of ATP hydrolase activity can protect ischemic myocardium.  相似文献   
76.
Cell-based delivery of therapeutic viruses has potential advantages over systemic viral administration, including attenuated neutralization and improved viral targeting. One of the exciting new areas of investigation is the potential ability of endothelial-lineage cells to deliver genes to the areas of neovascularization. In the present study, we compared two types of endothelial-lineage cells [outgrowth endothelial cells (OECs) and culture-modified mononuclear cells (CMMCs), also known as "endothelial progenitor cells"] for their ability to be infected with adenovirus and to home to the areas of neovascularization. Both cell types were isolated from peripheral blood of healthy human donors and expanded in culture. We demonstrate that OECs are more infectable and home better to tumors expressing VEGF on systemic administration. Furthermore, we used an adenoviral/retroviral chimeric system to convert OECs to retrovirus-producing cells. When injected systemically into tumor-bearing mice, OECs retain their ability to produce retrovirus and infect surrounding tumor cells. Our data demonstrate that OECs could be efficient carriers for viral delivery to areas of tumor neovascularization.  相似文献   
77.
We examined the effects of peroxynitrite pre-treatment on sarco/endoplasmic reticulum Ca(2+) (SERCA) pump in pig coronary artery smooth muscle and endothelium. In saponin-permeabilized cells, smooth muscle showed much greater rates of the SERCA Ca(2+) pump-dependent (45)Ca(2+) uptake/mg protein than did the endothelial cells. Peroxynitrite treatment of cells inhibited the SERCA pump more severely in smooth muscle cells than in endothelial cells. To determine implications of this observation, we next examined the effect of the SERCA pump inhibitor cyclopiazonic acid (CPA) on intracellular Ca(2+) concentration of intact cultured cells. CPA produced cytosolic Ca(2+) transients in cultured endothelial and smooth muscle cells. Pre-treatment with peroxynitrite (200 microM) inhibited the Ca(2+) transients in the smooth muscle but not in the endothelial cells. CPA contracts de-endothelialized artery rings and relaxes precontracted arteries with intact endothelium. Peroxynitrite (250 microM) pre-treatment inhibited contraction in the de-endothelialized artery rings, but not the endothelium-dependent relaxation. Thus, endothelial cells appear to be more resistant than smooth muscle to the effects of peroxynitrite at the levels of SERCA pump activity, CPA-induced Ca(2+) transients in cultured cells, and the effects of CPA on contractility. The greater resistance of endothelium to peroxynitrite may play a protective role in pathological conditions such as ischemia-reperfusion when excess free radicals are produced.  相似文献   
78.

Background  

Site-directed mutagenesis is an efficient method to alter the structure and function of genes. Here we report a rapid and efficient megaprimer-based polymerase chain reaction (PCR) mutagenesis strategy that by-passes any intermediate purification of DNA between two rounds of PCR.  相似文献   
79.
Neuronal injury triggers the release of ciliary neurotrophic factor (CNTF), promoting local neuronal repair but producing systemic effects of anorexia and lean body weight loss. Due to the rapid rate of systemic protein loss stimulated by CNTF, we hypothesized involvement of the hepatic ubiquitin-proteasome proteolytic (UPP) pathway in CNTF-induced proteolysis. To assess the role of central CNTF in systemic UPP regulation, we measured hepatic UPP mRNA and proteasome activity in a rat model of neuronal injury and determined alterations induced by intracerebroventricular (ICV) administration of CNTF-neutralizing antibody or additional exogenous CNTF. We also assessed proteolytic parameters and nutritional status by measuring caloric intake, body weight, and protein levels. We produced neuronal injury by implanting a lateral ventricle cannula and giving daily ICV saline bolus injections, which increased hepatic 20S proteasome mRNA and enzymatic activity while reducing caloric intake, body weight, and protein levels compared to controls. Administration of ICV anti-CNTF antibodies (but not control antibodies) prevented these effects. Addition of exogenous CNTF augmented the weight loss along with the increases in 20S proteasome mRNA and proteolytic activity induced by neuronal injury. We conclude that CNTF decreases lean body weight through a combination of appetite inhibition and UPP pathway activation.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号