首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1294篇
  免费   146篇
  2021年   12篇
  2020年   12篇
  2019年   13篇
  2018年   14篇
  2017年   14篇
  2016年   31篇
  2015年   38篇
  2014年   42篇
  2013年   56篇
  2012年   72篇
  2011年   63篇
  2010年   34篇
  2009年   26篇
  2008年   53篇
  2007年   69篇
  2006年   57篇
  2005年   60篇
  2004年   42篇
  2003年   57篇
  2002年   46篇
  2001年   41篇
  2000年   49篇
  1999年   37篇
  1998年   20篇
  1997年   16篇
  1996年   18篇
  1995年   13篇
  1994年   16篇
  1993年   13篇
  1992年   39篇
  1991年   29篇
  1990年   30篇
  1989年   16篇
  1988年   20篇
  1987年   24篇
  1986年   18篇
  1985年   17篇
  1984年   15篇
  1983年   17篇
  1982年   10篇
  1981年   11篇
  1980年   11篇
  1979年   15篇
  1978年   12篇
  1977年   13篇
  1975年   12篇
  1972年   9篇
  1970年   14篇
  1969年   14篇
  1967年   11篇
排序方式: 共有1440条查询结果,搜索用时 15 毫秒
141.
Apoptosis as an instrument in cardiovascular development   总被引:3,自引:0,他引:3  
Cell death as a phenomenon in embryonic development was first described over 100 years ago. Approximately 30 years ago the process was named apoptosis, and its involvement is now recognized in many life processes, in virtually every animal species, and from fertilization to the death of an organism. In cardiovascular development, it coincides with major developmental processes in specific time windows. Both intrinsic (controlled by mitochondrial activity) and extrinsic (starting with death receptors) apoptotic pathways co-regulate developmental mechanisms. During cardiac development, many cell populations are recruited to the heart, where they differentiate into cardiomyocytes, fibroblasts, smooth muscle cells, endocardial and endothelial cells lining the inner surfaces, and epicardial cells lining the outer contours. In particular, neural crest-derived cell populations, which migrate to specific locations in the heart, are prone to apoptosis. During the complex geometric changes that occur in the primary heart tube and connected vessel segments, proper interaction of the respective cell populations guarantees the ensuing steps of differentiation. Growth factors, including endothelin, VEGF, and TGF-beta, as well as other factors, such as FasL, play dominant roles in these phases. Transgenic and knockout studies have provided strong evidence for aberrant patterns of apoptosis resulting in congenital malformations and syndromic malformations, including septation anomalies, interrupted aortic arch segments, coronary anomalies, and DiGeorge syndrome. Embryonic remodeling of the arterial system, including the coronary arteries, is accompanied by apoptosis patterns, the disruption of which results in severe malformations. It is interesting to note that hemodynamic factors, such as flow-driven shear stress, regulate the expression of genes that are important for signaling molecules such as endothelin and NO-synthase. In general, high shear stress protects against apoptosis, thus preventing the onset of disease processes in the fully-grown vasculature, and regulating the remodeling of the vascular system in the embryo.  相似文献   
142.
This study describes the first promising steps in the comparison of peptide patterns of laser capture microdissected trophoblast cells obtained from frozen tissue sections in relative low numbers, approximately 125 cells. Trophoblasts were collected by laser capture microdissection from a terme human placenta and dissolved in detergents, sonified, and digested with trypsin. The resulting peptide mixtures were directly analyzed by matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. Using this approach specific peptide patterns that consist on average of approximately 35 peptide peaks for trophoblast cells, and surrounding villous stroma cells could be obtained. From the results it was concluded that trophoblast and surrounding villous stroma cells show exclusive discriminating peptide patterns. In the future this method is potentially suitable for finding specific peptides and identification of proteins that are related to the pathogenesis of trophoblast pregnancy diseases such as preeclampsia.  相似文献   
143.
A mathematical model of the L-arabinose/D-xylose catabolic pathway of Aspergillus niger was constructed based on the kinetic properties of the enzymes. For this purpose L-arabinose reductase, L-arabitol dehydrogenase and D-xylose reductase were purified using dye-affinity chromatography, and their kinetic properties were characterized. For the other enzymes of the pathway the kinetic data were available from the literature. The metabolic model was used to analyze flux and metabolite concentration control of the L-arabinose catabolic pathway. The model demonstrated that flux control does not reside at the enzyme following the intermediate with the highest concentration, L-arabitol, but is distributed over the first three steps in the pathway, preceding and following L-arabitol. Flux control appeared to be strongly dependent on the intracellular L-arabinose concentration. At 5 mM intracellular L-arabinose, a level that resulted in realistic intermediate concentrations in the model, flux control coefficients for L-arabinose reductase, L-arabitol dehydrogenase and L-xylulose reductase were 0.68, 0.17 and 0.14, respectively. The analysis can be used as a guide to identify targets for metabolic engineering aiming at either flux or metabolite level optimization of the L-arabinose catabolic pathway of A. niger. Faster L-arabinose utilization may enhance utilization of readily available organic waste containing hemicelluloses to be converted into industrially interesting metabolites or valuable enzymes or proteins.  相似文献   
144.
Many viruses achieve reversible attachment to sialic acid (Sia) by encoding envelope glycoproteins with receptor-binding and receptor-destroying activities. Toroviruses and group 2 coronaviruses bind to O-acetylated Sias, presumably via their spike proteins (S), whereas other glycoproteins, the hemagglutinin-esterases (HE), destroy Sia receptors by de-O-acetylation. Here, we present a comprehensive study of these enzymes. Sialate-9-O-acetylesterases specific for 5-N-acetyl-9-O-acetylneuraminic acid, described for bovine and human coronaviruses, also occur in equine coronaviruses and in porcine toroviruses. Bovine toroviruses, however, express novel sialate-9-O-acetylesterases, which prefer the di-O-acetylated substrate 5-N-acetyl-7(8),9-di-O-acetylneuraminic acid. Whereas most rodent coronaviruses express sialate-4-O-acetylesterases, the HE of murine coronavirus DVIM cleaves 9-O-acetylated Sias. Under the premise that HE specificity reflects receptor usage, we propose that two types of Sias serve as initial attachment factors for coronaviruses in mice. There are striking parallels between orthomyxo- and nidovirus biology. Reminiscent of antigenic shifts in orthomyxoviruses, rodent coronaviruses exchanged S and HE sequences through recombination to extents not appreciated before. As for orthomyxovirus reassortants, the fitness of nidovirus recombinant offspring probably depends both on antigenic properties and on compatibility of receptor-binding and receptor-destroying activities.  相似文献   
145.
Friedreich's ataxia (FRDA) is caused by low expression of frataxin, a small mitochondrial protein. Studies with both yeast and mammals have suggested that decreased frataxin levels lead to elevated intramitochondrial concentrations of labile (chelatable) iron, and consequently to oxidative mitochondrial damage. Here, we used the mitochondrion-selective fluorescent iron indicator/chelator rhodamine B-[(1,10-phenanthrolin-5-yl)aminocarbonyl]benzylester (RPA) to determine the mitochondrial chelatable iron of FRDA patient lymphoblast and fibroblast cell lines, in comparison with age- and sex-matched control cells. No alteration in the concentration of mitochondrial chelatable iron could be observed in patient cells, despite strongly decreased frataxin levels. Uptake studies with (55)Fe-transferrin and iron loading with ferric ammonium citrate revealed no significant differences in transferrin receptor density and iron responsive protein/iron regulatory element binding activity between patients and controls. However, sensitivity to H(2)O(2) was significantly increased in patient cells, and H(2)O(2) toxicity could be completely inhibited by the ubiquitously distributing iron chelator 2,2'-dipyridyl, but not by the mitochondrion-selective chelator RPA. Our data strongly suggest that frataxin deficiency does not affect the mitochondrial labile iron pool or other parameters of cellular iron metabolism and suggest a decreased antioxidative defense against extramitochondrial iron-derived radicals in patient cells. These results challenge current concepts favoring the use of mitochondrion-specific iron chelators and antioxidants to treat FRDA.  相似文献   
146.
S-nitrosothiols transport nitric oxide in vivo, and so-called transnitrosation reactions (i.e. the transfer of the nitroso function from nitrosothiol to thiolate) are believed to be involved in this process. In the present study we examined the N-nitrosotryptophan derivative-dependent nitrosation of thiols, a hitherto ignored possibility for the formation of S-nitrosothiols. The corresponding products were identified by (15)N-NMR spectrometry. The fact that the reaction proceeded under hypoxic conditions as well as in non-aqueous solution strongly indicated the occurrence of a transnitrosation reaction. Interestingly, S-nitrosothiols could only very slowly transnitrosate N-terminal-blocked tryptophan derivatives like melatonin in non-aqueous solution but did not induce such a reaction in water. The indole moiety of the N-nitrosotryptophan derivatives was fully restituted during the reaction with thiols, as demonstrated by both capillary zone electrophoresis and fluorescence spectroscopy. A determination of the Arrhenius parameters demonstrated that the corresponding rate constants were comparable with the ones known for the transfer of the nitroso function from nitrosothiol to thiolate. Thus, N-nitrosotryptophan-dependent nitrosation of thiols may occur in vivo and might offer the possibility of developing a new class of vasodilative drugs.  相似文献   
147.
BACKGROUND: Elevated homocysteine levels during embryonic development can result in neural tube and cardiovascular defects. The mechanisms that underlie the toxic effect of homocysteine are largely unknown. METHODS: We cultured mouse neural tube explants to study the effects of homocysteine on the migratory behavior of neural crest cells and on the levels of the gap junction protein Connexin43 (C x 43) and the actin- and C x 43-interacting protein ZO-1. RESULTS: Homocysteine exposure resulted in a significantly augmented maximal migration distance (MMD). The level of C x 43 immunolabeling was 2 times higher in the cytoplasm and cell protrusions of neural crest cells in homocysteine-treated cultures than in control cultures. Furthermore, colocalization of C x 43 and ZO-1 was increased in neural crest cell protrusions by this treatment. CONCLUSION: Increased C x 43 levels were previously shown to result in abnormal embryonic development. Our data raises the hypothesis that the embryotoxic effects of homocysteine may be mediated in part by its effects on C x 43 expression level and gap junction function in neural crest cells.  相似文献   
148.

Background and Aims

Human-mediated environmental change is increasing selection pressure for the capacity in plants to colonize new areas. Habitat fragmentation combined with climate change, in general, forces species to colonize areas over longer distances. Mating systems and genetic load are important determinants of the establishment and long-term survival of new populations. Here, the mating system of Asplenium scolopendrium, a diploid homosporous fern species, is examined in relation to colonization processes.

Methods

A common environment experiment was conducted with 13 pairs of sporophytes, each from a different site. Together they constitute at least nine distinct genotypes, representing an estimated approx. 95 % of the non-private intraspecific genetic variation in Europe. Sporophyte production was recorded for gametophytes derived from each parent sporophyte. Gametophytes were grown in vitro in three different ways: (I) in isolation, (II) with a gametophyte from a different sporophyte within the same site or (III) with a partner from a different site.

Key Results

Sporophyte production was highest in among-site crosses (III), intermediate in within-site crosses (II) and was lowest in isolated gametophytes (I), strongly indicating inbreeding depression. However, intragametophytic selfing was observed in most of the genotypes tested (eight out of nine).

Conclusions

The results imply a mixed mating system in A. scolopendrium, with outcrossing when possible and occasional selfing when needed. Occasional intragametophytic selfing facilitates the successful colonization of new sites from a single spore. The resulting sporophyte, which will be completely homozygous, will shed large amounts of spores over time. Each year this creates a bed of gametophytes in the vicinity of the parent. Any unrelated spore which arrives is then selectively favoured to reproduce and contribute its genes to the new population. Thus, while selfing facilitates initial colonization success, inbreeding depression promotes genetically diverse populations through outcrossing. The results provide further evidence against the overly simple dichotomous distinction of fern species as either selfing or outcrossing.  相似文献   
149.
The absolute configurations of two precursors, that is, 1-(3',4'-dichlorophenyl)-propanol and 1-(3',4'-dichlorophenyl)-propanamine, of a potent 2-mercapto-imidazole CCR-2 receptor antagonist, JNJ-27553292, were determined using vibrational circular dichroism. As a consequence, the absolute configuration of the antagonist itself was also determined. The two precursor compounds were subjected to a thorough conformational analysis and rotational strengths were calculated at the B3LYP/cc-pVTZ level of theory. Based on these data, vibrational circular dichroism spectra were simulated, which in turn were compared with experimental spectra. Agreement between the spectra allowed the assignment of the absolute configuration, which is in agreement with the proposed configuration based on stereospecific reactions on similar compounds.  相似文献   
150.
Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of neuronal cell survival and differentiation factors but is thought to be involved in neuronal cell proliferation and myelination as well. To explore the role of BDNF in vivo, we employed the intermediate pituitary melanotrope cells of the amphibian Xenopus laevis as a model system. These cells mediate background adaptation of the animal by producing high levels of the prohormone proopiomelanocortin (POMC) when the animal is black adapted. We used stable X. transgenesis in combination with the POMC gene promoter to generate transgenic frogs overexpressing BDNF specifically and physiologically inducible in the melanotrope cells. Intriguingly, an approximately 25-fold overexpression of BDNF resulted in hyperplastic glial cells and myelinated axons infiltrating the pituitary, whereby the transgenic melanotrope cells became located dispersed among the induced tissue. The infiltrating glial cells and axons originated from both peripheral and central nervous system sources. The formation of the phenotype started around tadpole stage 50 and was induced by placing white-adapted transgenics on a black background, i.e. after activation of transgene expression. The severity of the phenotype depended on the level of transgene expression, because the intermediate pituitaries from transgenic animals raised on a white background or from transgenics with only an approximately 5-fold BDNF overexpression were essentially not affected. In conclusion, we show in a physiological context that, besides its classical role as neuronal cell survival and differentiation factor, in vivo BDNF can also induce glial cell proliferation as well as axonal outgrowth and myelination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号