首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   51篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   8篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   7篇
  2012年   3篇
  2011年   8篇
  2010年   4篇
  2009年   5篇
  2008年   8篇
  2007年   11篇
  2006年   9篇
  2005年   12篇
  2004年   11篇
  2003年   11篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   6篇
  1994年   7篇
  1993年   2篇
  1992年   6篇
  1991年   5篇
  1990年   7篇
  1989年   7篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   6篇
  1983年   5篇
  1982年   1篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
排序方式: 共有238条查询结果,搜索用时 15 毫秒
111.
The light-harvesting antenna of photosystem II (PSII) has the ability to switch rapidly between a state of efficient light use and one in which excess excitation energy is harmlessly dissipated as heat, a process known as qE. We investigated the single-molecule fluorescence intermittency of the main component of the PSII antenna (LHCII) under conditions that mimic efficient use of light or qE, and we demonstrate that weakly fluorescing states are stabilized under qE conditions. Thus, we propose that qE is explained by biological control over the intrinsic dynamic disorder in the complex-the frequencies of switching establish whether the population of complexes is unquenched or quenched. Furthermore, the quenched states were accompanied by two distinct spectral signatures, suggesting more than one mechanism for energy dissipation in LHCII.  相似文献   
112.
Nonphotochemical quenching (NPQ) is the fundamental process by which plants exposed to high light intensities dissipate the potentially harmful excess energy as heat. Recently, it has been shown that efficient energy dissipation can be induced in the major light-harvesting complexes of photosystem II (LHCII) in the absence of protein-protein interactions. Spectroscopic measurements on these samples (LHCII gels) in the quenched state revealed specific alterations in the absorption and circular dichroism bands assigned to neoxanthin and lutein 1 molecules. In this work, we investigate the changes in conformation of the pigments involved in NPQ using resonance Raman spectroscopy. By selective excitation we show that, as well as the twisting of neoxanthin that has been reported previously, the lutein 1 pigment also undergoes a significant change in conformation when LHCII switches to the energy dissipative state. Selective two-photon excitation of carotenoid (Car) dark states (Car S(1)) performed on LHCII gels shows that the extent of electronic interactions between Car S(1) and chlorophyll states correlates linearly with chlorophyll fluorescence quenching, as observed previously for isolated LHCII (aggregated versus trimeric) and whole plants (with versus without NPQ).  相似文献   
113.
To prevent photo-oxidative damage to the photosynthetic membrane in strong light, plants dissipate excess absorbed light energy as heat in a mechanism known as non-photochemical quenching (NPQ). NPQ is triggered by the trans-membrane proton gradient (ΔpH), which causes the protonation of the photosystem II light-harvesting antenna (LHCII) and the PsbS protein, as well as the de-epoxidation of the xanthophyll violaxanthin to zeaxanthin. The combination of these factors brings about formation of dissipative pigment interactions that quench the excess energy. The formation of NPQ is associated with certain absorption changes that have been suggested to reflect a conformational change in LHCII brought about by its protonation. The light-minus-dark recovery absorption difference spectrum is characterized by a series of positive and negative bands, the best known of which is ΔA(535). Light-minus-dark recovery resonance Raman difference spectra performed at the wavelength of the absorption change of interest allows identification of the pigment responsible from its unique vibrational signature. Using this technique, the origin of ΔA(535) was previously shown to be a subpopulation of red-shifted zeaxanthin molecules. In the absence of zeaxanthin (and antheraxanthin), a proportion of NPQ remains, and the ΔA(535) change is blue-shifted to 525 nm (ΔA(525)). Using resonance Raman spectroscopy, it is shown that the ΔA(525) absorption change in Arabidopsis leaves lacking zeaxanthin belongs to a red-shifted subpopulation of violaxanthin molecules formed during NPQ. The presence of the same ΔA(535) and ΔA(525) Raman signatures in vitro in aggregated LHCII, containing zeaxanthin and violaxanthin, respectively, leads to a new proposal for the origin of the xanthophyll red shifts associated with NPQ.  相似文献   
114.
Time-resolved visible pump/mid-infrared (mid-IR) probe spectroscopy in the region between 1600 and 1800 cm−1 was used to investigate electron transfer, radical pair relaxation, and protein relaxation at room temperature in the Rhodobacter sphaeroides reaction center (RC). Wild-type RCs both with and without the quinone electron acceptor QA, were excited at 600 nm (nonselective excitation), 800 nm (direct excitation of the monomeric bacteriochlorophyll (BChl) cofactors), and 860 nm (direct excitation of the dimer of primary donor (P) BChls (PL/PM)). The region between 1600 and 1800 cm−1 encompasses absorption changes associated with carbonyl (CO) stretch vibrational modes of the cofactors and protein. After photoexcitation of the RC the primary electron donor P excited singlet state (P*) decayed on a timescale of 3.7 ps to the state (where BL is the accessory BChl electron acceptor). This is the first report of the mid-IR absorption spectrum of ; the difference spectrum indicates that the 9-keto CO stretch of BL is located around 1670-1680 cm−1. After subsequent electron transfer to the bacteriopheophytin HL in ∼1 ps, the state was formed. A sequential analysis and simultaneous target analysis of the data showed a relaxation of the radical pair on the ∼20 ps timescale, accompanied by a change in the relative ratio of the and bands and by a minor change in the band amplitude at 1640 cm−1 that may be tentatively ascribed to the response of an amide CO to the radical pair formation. We conclude that the drop in free energy associated with the relaxation of , is due to an increased localization of the electron hole on the PL half of the dimer and a further consequence is a reduction in the electrical field causing the Stark shift of one or more amide CO oscillators.  相似文献   
115.
Excitation energy transfer in monomeric and trimeric forms of photosystem I (PSI) from the cyanobacterium Synechocystis sp. PCC 6803 in solution or immobilized on FTO conducting glass was compared using time-resolved fluorescence. Deposition of PSI on glass preserves bi-exponential excitation decay of ~4–7 and ~21–25 ps lifetimes characteristic of PSI in solution. The faster phase was assigned in part to photochemical quenching (charge separation) of excited bulk chlorophylls and in part to energy transfer from bulk to low-energy (red) chlorophylls. The slower phase was assigned to photochemical quenching of the excitation equilibrated over bulk and red chlorophylls. The main differences between dissolved and immobilized PSI (iPSI) are: (1) the average excitation decay in iPSI is about 11 ps, which is faster by a few ps than for PSI in solution due to significantly faster excitation quenching of bulk chlorophylls by charge separation (~10 ps instead of ~15 ps) accompanied by slightly weaker coupling of bulk and red chlorophylls; (2) the number of red chlorophylls in monomeric PSI increases twice—from 3 in solution to 6 after immobilization—as a result of interaction with neighboring monomers and conducting glass; despite the increased number of red chlorophylls, the excitation decay accelerates in iPSI; (3) the number of red chlorophylls in trimeric PSI is 4 (per monomer) and remains unchanged after immobilization; (4) in all the samples under study, the free energy gap between mean red (emission at ~710 nm) and mean bulk (emission at ~686 nm) emitting states of chlorophylls was estimated at a similar level of 17–27 meV. All these observations indicate that despite slight modifications, dried PSI complexes adsorbed on the FTO surface remain fully functional in terms of excitation energy transfer and primary charge separation that is particularly important in the view of photovoltaic applications of this photosystem.  相似文献   
116.
CP43 is a chlorophyll-protein complex that funnels excitation energy from the main light-harvesting system of photosystem II to the photochemical reaction center. We purified CP43 from spinach photosystem II membranes in the presence of the nonionic detergent n-dodecyl-beta,D-maltoside and recorded its spectroscopic properties at various temperatures between 4 and 293 K by a number of polarized absorption and fluorescence techniques, fluorescence line narrowing, and Stark spectroscopy. The results indicate two "red" states in the Q(y) absorption region of the chlorophylls. The first peaks at 682.5 nm at 4 K, has an extremely narrow bandwidth with a full width at half-maximum of approximately 2.7 nm (58 cm(-1)) at 4 K, and has the oscillator strength of a single chlorophyll. The second peaks at approximately 679 nm, has a much broader bandshape, is caused by several excitonically interacting chlorophylls, and is responsible for all 4 K absorption at wavelengths longer than 685 nm. The Stark spectrum of CP43 resembles the first derivative of the absorption spectrum and has an exceptionally small overall size, which we attribute to opposing orientations of the monomer dipole moments of the excitonically coupled pigments.  相似文献   
117.
The excitation-wavelength dependence of the excited-state dynamics of monomeric and trimeric Photosystem I (PSI) particles from Synechocystis PCC 6803 as well as trimeric PSI particles from Synechococcus elongatus has been studied at room temperature using time-resolved fluorescence spectroscopy. For aselective (400 nm), carotenoid (505 nm), and bulk chlorophyll (approximately 650 nm) excitation in all species, a downhill energy-transfer component is observed, corresponding to a lifetime of 3.4-5.5 ps. For selective red excitation (702-719 nm) in all species, a significantly faster, an approximately 1-ps, uphill transfer component was recorded. In Synechococcus PSI, an additional approximately 10-ps downhill energy-transfer component is found for all wavelengths of excitation, except 719 nm. Each of the species exhibits its own characteristic trap spectrum, the shape of which is independent of the wavelength of excitation. This trap spectrum decays in approximately 23 ps in both monomeric and trimeric Synechocystis PSI and in approximately 35 ps in trimeric Synechococcus PSI. The data were simulated based on the 2.5 A structural model of PSI of Synechococcus elongatus using the F?rster equation for energy transfer, and using the 0.6-1-ps charge-separation time and the value of 1.2-1.3 for the index of refraction that were obtained from the dynamics of a hypothetical PSI particle without red chls. The experimentally obtained lifetimes and spectra were reproduced well by assigning three of the chlorophyll-a (chla) dimers observed in the structure to the C708/C702RT pool of red chls present in PSI from both species. Essential for the simulation of the dynamics of Synechococcus PSI is the assignment of the single chla trimer in the structure to the C719/C708RT pool present in this species.  相似文献   
118.
We have measured low-intensity, polarized one-color pump-probe traces in the B800 band of the light-harvesting complex LH2 of Rhodospirillum molischianum at 77 K. The excitation/detection wavelength was tuned through the B800 band. A single-wavelength and a global target analysis of the data were performed with a model that accounts for excitation energy transfer among the B800 molecules and from B800 to B850. By including the anisotropy of the signals into the fitting procedure, both transfer processes could be separated. It was estimated in the global target analysis that the intra-B800 energy transfer, i.e., the hopping of the excitation from one B800 to another B800 molecule, takes approximately 0.5 ps at 77 K. This transfer time increases with the excitation/detection wavelength from 0.3 ps on the blue side of the B800 band to approximately 0.8 ps on the red side. The residual B800 anisotropy shows a wavelength dependence as expected for energy transfer within an inhomogeneously broadened cluster of weakly coupled pigments. In the global target analysis, the transfer time from B800 to B850 was determined to be approximately 1.7 ps at 77 K. In the single-wavelength analysis, a speeding-up of the B800 --> B850 energy transfer rate toward the blue edge of the B800 band was found. This nicely correlates with the proposed position of the suggested high-exciton component of the B850 band acting as an additional decay channel for B800 excitations.  相似文献   
119.
The absorption (OD) and circular dichroism (CD) spectra of LH2 complexes from various purple bacteria have been measured and modeled. Based on the lineshapes of the spectra we can sort the LH2 complexes into two distinguishable groups: "acidophila"-like (type 1) and "molischianum"-like (type 2). Starting from the known geometric structures of Rhodopseudomonas (Rps.) acidophila and Rhodospirillum (Rsp.) molischianum we can model the OD and CD spectra of all species by just slightly varying some key parameters: the interaction strength, the energy difference of alpha- and beta-bound B850 bacteriochlorophylls (BChls), the orientation of the B800 and B850 BChls, and the (in)homogeneous broadening. Although the ring size can vary, the data are consistent with all the LH2 complexes having basically very similar structures.  相似文献   
120.
Green plant photosystem I (PSI) consists of at least 18 different protein subunits. The roles of some of these protein subunits are not well known, in particular those that do not occur in the well characterized PSI complexes from cyanobacteria. We investigated the spectroscopic properties and excited-state dynamics of isolated PSI-200 particles from wild-type and mutant Arabidopsis thaliana plants devoid of the PSI-G, PSI-K, PSI-L, or PSI-N subunit. Pigment analysis and a comparison of the 5 K absorption spectra of the various particles suggests that the PSI-L and PSI-H subunits together bind approximately five chlorophyll a molecules with absorption maxima near 688 and 667 nm, that the PSI-G subunit binds approximately two red-shifted beta-carotene molecules, that PSI-200 particles without PSI-K lack a part of the peripheral antenna, and that the PSI-N subunit does not bind pigments. Measurements of fluorescence decay kinetics at room temperature with picosecond time resolution revealed lifetimes of ~0.6, 5, 15, 50, 120, and 5000 ps in all particles. The 5- and 15-ps phases could, at least in part, be attributed to the excitation equilibration between bulk and red chlorophyll forms, though the 15-ps phase also contains a contribution from trapping by charge separation. The 50- and 120-ps phases predominantly reflect trapping by charge separation. We suggest that contributions from the core antenna dominate the 15-ps trapping phase, that those from the peripheral antenna proteins Lhca2 and Lhca3 dominate the 50-ps phase, and that those from Lhca1 and Lhca4 dominate the 120-ps phase. In the PSI-200 particles without PSI-K or PSI-G protein, more excitations are trapped in the 15-ps phase and less in 50- and 120-ps phases, which is in agreement with the notion that these subunits are involved in the interaction between the core and peripheral antenna proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号