全文获取类型
收费全文 | 103篇 |
免费 | 30篇 |
专业分类
133篇 |
出版年
2022年 | 1篇 |
2021年 | 7篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 2篇 |
2016年 | 7篇 |
2015年 | 2篇 |
2014年 | 5篇 |
2013年 | 3篇 |
2012年 | 5篇 |
2011年 | 10篇 |
2010年 | 5篇 |
2009年 | 3篇 |
2008年 | 6篇 |
2007年 | 5篇 |
2006年 | 6篇 |
2005年 | 6篇 |
2004年 | 4篇 |
2003年 | 12篇 |
2002年 | 4篇 |
2001年 | 1篇 |
2000年 | 7篇 |
1999年 | 5篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1987年 | 6篇 |
1986年 | 3篇 |
1968年 | 1篇 |
排序方式: 共有133条查询结果,搜索用时 15 毫秒
31.
32.
Tyler Jarvik Chris Smillie Eduardo A. Groisman Howard Ochman 《Journal of bacteriology》2010,192(2):560-567
Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that causes gastroenteritis in humans and a typhoid-like disease in mice and is often used as a model for the disease promoted by the human-adapted S. enterica serovar Typhi. Despite its health importance, the only S. Typhimurium strain for which the complete genomic sequence has been determined is the avirulent LT2 strain, which is extensively used in genetic and physiologic studies. Here, we report the complete genomic sequence of the S. Typhimurium strain 14028s, as well as those of its progenitor and two additional derivatives. Comparison of these S. Typhimurium genomes revealed differences in the patterns of sequence evolution and the complete inventory of genetic alterations incurred in virulent and avirulent strains, as well as the sequence changes accumulated during laboratory passage of pathogenic organisms.The genomes of related bacteria can differ in three ways: (i) gene content, where one bacterial species or strain harbors genes absent from the other organism; (ii) nucleotide substitutions within largely conserved DNA sequences, which can result in amino acid changes in orthologous proteins, form pseudogenes, and promote distinct expression patterns of genes present in the two organisms; and (iii) changes in gene arrangement, caused by inversions and translocations. These differences have been observed not only across bacterial species but also among strains belonging to the same species. Recent genomic analyses have revealed that many bacterial pathogens of humans are virtually monomorphic (1) and exhibit very limited sequence diversity, raising questions about the nature of the genetic changes governing distinct behaviors. Furthermore, several bacterial pathogens that have been subjected to extensive passage in the laboratory display altered virulence characteristics, but the genetic basis for these alterations remains largely unknown. Here, we address both of these questions by determining and analyzing the genome sequences of closely related isolates of Salmonella enterica serovar Typhimurium, a Gram-negative pathogen that has been used as a preeminent model to investigate basic genetic mechanisms (2, 8, 46, 59), as well as the interaction between bacterial pathogens and mammalian hosts (11, 41).The genus Salmonella is divided into two species: Salmonella bongori and Salmonella enterica, which together comprise over 2,300 serovars differing in host specificity and the disease conditions they promote in various hosts. For example, S. enterica serovar Typhi is human restricted and causes typhoid fever, whereas serovar Typhimurium is a broad-host-range organism that causes gastroenteritis in humans and a typhoid-like disease in mice. Although the complete genome sequences of 15 Salmonella enterica strains are available, there is only a single representative of S. Typhimurium—strain LT2 (31). Despite its wide application in genetic analysis, strain LT2 is highly attenuated for virulence in both in vitro and in vivo assays (52, 56), leading many investigators to use other S. Typhimurium isolates to examine the genetic basis for bacterial pathogenesis (11, 14, 16).Over 300 virulence genes (3, 5, 47) have already been identified in Salmonella enterica serovar Typhimurium 14028 (now termed S. enterica subsp. enterica serovar Typhimurium ATCC 14028), which is a descendant of CDC 60-6516, a strain isolated in 1960 from pools of hearts and livers of 4-week-old chickens (P. Fields, personal communication). Whereas strain 14028 has been typed as LT2, a designation based on phage sensitivity (27), the two strains were isolated from distinct sources decades apart, which makes their genealogy and exact relationship obscure. A derivative of the original 14028 strain with a rough colony morphology (due to changes in O-antigen expression) was designated 14028r to distinguish it from the original smooth strain, renamed 14028s, and was used in a genetic screen for Salmonella virulence genes because it retained lethality for mice and the ability to survive within murine macrophages. Strain 14028 was also used for the identification of Salmonella genes that were specifically expressed during infection of a mammalian host (30). Both 14028 and LT2 possess a 90-kb virulence plasmid promoting intracellular replication and systemic disease (14), but they differ in their prophage contents, as is often the case among S. Typhimurium strains (12, 13).To identify the individual changes that differentiate S. Typhimurium strains and to assess the nature of variation that arises during laboratory storage and passage, we determined the genome sequence of strain 14028s. This genome was then used as a reference for sequencing its progenitors, including the original source strain CDC 60-6516 and the earliest smooth and rough variants. Our analysis uncovered the genomic differences that arose during the past decades of laboratory cultivation and showed that derivatives with different virulence potentials can follow distinct patterns of sequence evolution. 相似文献
33.
34.
Because it can undergo reversible changes in oxidation state, iron is an excellent biocatalyst but also a potentially deleterious metal. Iron-mediated toxicity has been ascribed to Fe(II), which reacts with oxygen to generate free radicals that damage macromolecules and cause cell death. However, we now report that Fe(III) exhibits microbicidal activity towards strains of Salmonella enterica, Escherichia coli and Klebsiella pneumoniae defective in the Fe(III)-responding PmrA/PmrB signal transduction system. Fe(III) bound to a pmrA Salmonella mutant more effectively than to the isogenic wild-type strain and exerted its microbicidal activity even under anaerobic conditions. Moreover, Fe(III) permeabilized the outer membrane of the pmrA mutant, rendering it susceptible to vancomycin, which is normally non-toxic to Gram-negative species. On the other hand, Fe(III) did not affect the viability of a mutant defective in Fur, the major regulator of cytosolic iron homeostasis, which is hypersensitive to Fe(II)-mediated toxicity. A functional pmrA gene was necessary for bacterial survival in soil. Our results indicate that Fe(III) exerts its microbicidal activity by a mechanism that is oxygen independent and different from that mediated by Fe(II). 相似文献
35.
36.
The mapping and reconstitution of a conformational discontinuous B-cell epitope of HIV-1 总被引:5,自引:0,他引:5
Enshell-Seijffers D Denisov D Groisman B Smelyanski L Meyuhas R Gross G Denisova G Gershoni JM 《Journal of molecular biology》2003,334(1):87-101
A method for the discovery of the structure of conformational discontinuous epitopes of monoclonal antibodies (mAbs) is described. The mAb is used to select specific phages from combinatorial phage-display peptide libraries that in turn are used as an epitope-defining database that is applied via a novel computer algorithm to analyze the crystalline structure of the original antigen. The algorithm is based on the following: (1) Most contacts between a mAb and an antigen are through side-chain atoms of the residues. (2) In the three-dimensional structure of a protein, amino acid residues remote in linear sequence can juxtapose to one another through folding. (3) Tandem amino acid residues of the selected phage-displayed peptides can represent pairs of juxtaposed amino acid residues of the antigen. (4) Contact residues of the epitope are accessible to the antigen surface. (5) The most frequent tandem pairs of amino acid residues in the selected phage-displayed peptides can reflect pairs of juxtaposed amino acid residues of the epitope. Application of the algorithm enabled prediction of epitopes. On the basis of these predictions, segments of an antigen were used to reconstitute an antigenic epitope mimetic that was recognized by its original mAb. 相似文献
37.
Chemical modifications of components of the bacterial cell envelope can enhance resistance to antimicrobial agents. Why then are such modifications produced only under specific conditions? Here, we address this question by examining the role of regulated variations in O‐antigen length in the lipopolysaccharide (LPS), a glycolipid that forms most of the outer leaflet of the outer membrane in Gram‐negative bacteria. We determined that activation of the PmrA/PmrB two‐component system, which is the major regulator of LPS alterations in Salmonella enterica serovar Typhimurium, impaired growth of Salmonella in bile. This growth defect required the PmrA‐activated gene wzzst, which encodes the protein that determines long O‐antigen chain length and confers resistance to complement‐mediated killing. By contrast, this growth defect did not require the wzzfepE gene, which controls production of very long O‐antigen, or other PmrA‐activated genes that mediate modifications of lipid A or core regions of the LPS. Additionally, we establish that long O‐antigen inhibits growth in bile only in the presence of enterobacterial common antigen, an outer‐membrane glycolipid that contributes to bile resistance. Our results suggest that Salmonella regulates the proportion of long O‐antigen in its LPS to respond to the different conditions it faces during infection. 相似文献
38.
39.
40.
Groisman A Lobo C Cho H Campbell JK Dufour YS Stevens AM Levchenko A 《Nature methods》2005,2(9):685-689
Bacteria and yeast frequently exist as populations capable of reaching extremely high cell densities. With conventional culturing techniques, however, cell proliferation and ultimate density are limited by depletion of nutrients and accumulation of metabolites in the medium. Here we describe design and operation of microfabricated elastomer chips, in which chemostatic conditions are maintained for bacterial and yeast colonies growing in an array of shallow microscopic chambers. Walls of the chambers are impassable for the cells, but allow diffusion of chemicals. Thus, the chemical contents of the chambers are maintained virtually identical to those of the nearby channels with continuous flowthrough of a dynamically defined medium. We demonstrate growth of cell cultures to densely packed ensembles that proceeds exponentially in a temperature-dependent fashion, and we use the devices to monitor colony growth from a single cell and to analyze the cell response to an exogenously added autoinducer. 相似文献