首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34308篇
  免费   2549篇
  国内免费   10篇
  2023年   182篇
  2022年   308篇
  2021年   653篇
  2020年   476篇
  2019年   511篇
  2018年   1177篇
  2017年   1000篇
  2016年   1103篇
  2015年   1504篇
  2014年   1579篇
  2013年   2090篇
  2012年   2556篇
  2011年   2397篇
  2010年   1547篇
  2009年   1364篇
  2008年   1951篇
  2007年   1845篇
  2006年   1732篇
  2005年   1543篇
  2004年   1532篇
  2003年   1353篇
  2002年   1243篇
  2001年   697篇
  2000年   582篇
  1999年   548篇
  1998年   383篇
  1997年   270篇
  1996年   296篇
  1995年   270篇
  1994年   224篇
  1993年   208篇
  1992年   292篇
  1991年   288篇
  1990年   230篇
  1989年   238篇
  1988年   201篇
  1987年   180篇
  1986年   170篇
  1985年   187篇
  1984年   164篇
  1983年   121篇
  1982年   102篇
  1981年   112篇
  1980年   112篇
  1979年   126篇
  1978年   118篇
  1976年   101篇
  1975年   98篇
  1974年   98篇
  1973年   92篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
Optimal conditions for enzymatic synthesis of biodiesel from palm oil and ethanol were determined with lipase from Pseudomonas fluorescens immobilized on epoxy polysiloxane–polyvinyl alcohol hybrid composite under a microwave heating system. The main goal was to reduce the reaction time preliminarily established by a process of conventional heating. A full factorial design assessed the influence of ethanol-to-palm oil (8:1–16:1) molar ratio and temperature (43–57 °C) on the transesterification yield. Microwave irradiations varying from 8 to 15 W were set up according to reaction temperature. Under optimal conditions (8:1 ethanol-to-oil molar ratio at 43 °C), 97.56 % of the fatty acids present in the palm oil were converted into ethyl esters in a 12-h reaction, corresponding to a productivity of 64.2 mg ethyl esters g?1 h?1. This represents a sixfold increase from the process carried out under conventional heating, thus proving to be a potential tool for enhancing biochemical modification of oils and fats. In general, advantages of the new process include: (1) microwaves speed up the enzyme-catalyzed reactions; (2) there are no destructive effects on the enzyme properties, such as stability and substrate specificity, and (3) the microwave assistance allows the entire reaction volume to be heated uniformly. These bring benefits of a low energy demand and a faster conversion of palm oil into biodiesel.  相似文献   
902.
Olive mill wastewater (OMW) characteristics make it a suitable resource to be used as a microbial culture media to produce value-added compounds, such as enzymes. In this work, the ability of the novel species Aspergillus ibericus to discolor OMW and produce lipase was studied. An initial screening on plates containing an OMW-based agar medium and an emulsified olive oil/rhodamine-B agar medium was employed to select the strain A. ibericus MUM 03.49. Then, experiments in conical flasks with liquid OMW-based media showed that the fungus could growth on undiluted OMW, with a chemical oxygen demand (COD) of 97 ± 2 g/L, and to produce up to 2,927 ± 54 U/L of lipase. When pure OMW was used in the media, the maximum COD and color reduction achieved were 45 and 97 %, respectively. When OMW diluted to 10 % was used, A. ibericus was able to reduce phenolic and aromatic compounds by 37 and 39 %, respectively. Additionally, lipase production was found to be promoted by the addition of mineral nutrients. When the fermentations were scaled up to a 2-L bioreactor, A. ibericus produced up to 8,319 ± 33 U/L of lipase, and the maximum COD and color reduction were 57 and 24 %, respectively.  相似文献   
903.
Sulfate reduction is an appropriate approach for the treatment of effluents with sulfate and dissolved metals. In sulfate‐reducing reactors, acetate may largely contribute to the residual organic matter, because not all sulfate reducers are able to couple the oxidation of acetate to the reduction of sulfate, limiting the treatment efficiency. In this study, we investigated the diversity of a bacterial community in the biofilm of a laboratory scale down‐flow fluidized bed reactor, which was developed under sulfidogenic conditions at an influent pH between 4 and 6. The sequence analysis of the microbial community showed that the 16S rRNA gene sequence of almost 50% of the clones had a high similarity with Anaerolineaceae. At second place, 33% of the 16S rRNA phylotypes were affiliated with the sulfate‐reducing bacteria Desulfobacca acetoxidans and Desulfatirhabdium butyrativorans, suggesting that acetotrophic sulfate reduction was occurring in the system. The remaining bacterial phylotypes were related to fermenting bacteria found at the advanced stage of reactor operation. The results indicate that the acetotrophic sulfate‐reducing bacteria were able to remain within the biofilm, which is a significant result because few natural consortia harbor complete oxidizing sulfate‐reducers, improving the acetate removal via sulfate reduction in the reactor.  相似文献   
904.
905.
While physicists regularly use mathematical equations to describe natural phenomena, mathematical modeling of biological systems is still not well established and is hampered by communication barriers between experimental and theoretical biologists. In a recent study we developed a mathematical model of zinc uptake and radial transport in Arabidopsis thaliana roots. By refraining from writing many equations in the main text and confining the derivation of formulas to a supplemental file, we attempted to reach both experimentalists and theoreticians likewise. Here, we give a short summary of our results on the accumulation pattern of zinc and the importance of transporter regulation, water flow and geometry. For a better understanding of the dynamics of adaptation to changes in external conditions, we plead for more detailed and frequent measurements. As a new aspect, we analyzed the effect of buffering. Simulations indicate that it dampens oscillations and may therefore play a key role in zinc homeostasis.  相似文献   
906.
Three different pathways of serine (Ser) biosynthesis have been described in plants: the Glycolate pathway, which is part of the Photorespiratory pathway, and 2 non-Photorespiratory pathways, the Glycerate and the Phosphorylated pathways. The Phosphorylated Pathway of Ser Biosynthesis (PPSB) has been known to exist since the 1950s, but its biological relevance was not revealed until quite recently when the last enzyme of the pathway, the Phosphoserine Phosphatase, was functionally characterized. In the associated study1, we characterized a family of genes coding for putatite phosphoglycerate dehydrogenases (PGDH, 3-PGDH, and EDA9), the first enzyme of the PPSB. A metabolomics study using overexpressing plants indicated that all PGDH family genes were able to regulate Ser homeostasis but only lacking of EDA9 expression caused drastic developmental defects. We provided genetic and molecular evidence for the essential role of EDA9 for embryo and pollen development. Here, some new insights into the physiological/molecular function of PPSB and Ser are presented and discussed.  相似文献   
907.
Nitric oxide (NO) is a lipophillic, highly diffusible, and short-lived physiological messenger which regulates a variety of physiopathological responses. NO may exert its cellular action through cGMP-dependent and cGMP-independent pathways which includes different postranslational modifications. The effect of NO in cancer depends on the activity and localization of NOS isoforms, concentration and duration of NO exposure, cellular sensitivity, and hypoxia/re-oxygenation process. NO regulates critical factors such as the hypoxia inducible factor-1 (HIF-1) and p53 generally leading to growth arrest, apoptosis or adaptation. NO sensitizes hepatoma cells to chemotherapeutic compounds probably through increased p53 and cell death receptor expressions.  相似文献   
908.
New microbial genomes are sequenced at a high pace, allowing insight into the genetics of not only cultured microbes, but a wide range of metagenomic collections such as the human microbiome. To understand the deluge of genomic data we face, computational approaches for gene functional annotation are invaluable. We introduce a novel model for computational annotation that refines two established concepts: annotation based on homology and annotation based on phyletic profiling. The phyletic profiling-based model that includes both inferred orthologs and paralogs—homologs separated by a speciation and a duplication event, respectively—provides more annotations at the same average Precision than the model that includes only inferred orthologs. For experimental validation, we selected 38 poorly annotated Escherichia coli genes for which the model assigned one of three GO terms with high confidence: involvement in DNA repair, protein translation, or cell wall synthesis. Results of antibiotic stress survival assays on E. coli knockout mutants showed high agreement with our model''s estimates of accuracy: out of 38 predictions obtained at the reported Precision of 60%, we confirmed 25 predictions, indicating that our confidence estimates can be used to make informed decisions on experimental validation. Our work will contribute to making experimental validation of computational predictions more approachable, both in cost and time. Our predictions for 998 prokaryotic genomes include ∼400000 specific annotations with the estimated Precision of 90%, ∼19000 of which are highly specific—e.g. “penicillin binding,” “tRNA aminoacylation for protein translation,” or “pathogenesis”—and are freely available at http://gorbi.irb.hr/.  相似文献   
909.
910.
Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号